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I. IxTRODUCTION
A. PURPOSE

The Ilkovic equation was introduced (10) in 1934 to relate the average diffu-
sion-controlled current experienced during polarographic electrolysis at the
dropping mercury electrode to the solution concentration and diffusion co-
efficient of electroactive molecules, the mass rate of flow of mercury from the
capillary electrode, and the drop lifetime. A common form of the equation is
the following:

i = 607nD12Cm2I3Ll0 (1)

where 4 is the time-average diffusion current in microamperes, D is the diffusion
coeflicient of the electroactive substance in square centimeters per second,

! Present address: Westinghouse Atomie Power Division, Bettis Field, Pittsburgh 30,
Pennsylvania.
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C is its concentration in millimoles, m is the mass rate of flow of mercury in
milligrams per second, ¢ is the drop lifetime in seconds, and » is the number of
Faradays of electricity required per mole of electrode reaction (hence, the num-
ber of electrons transferred per active molecule).

In a more general version, which gives the value of the instantaneous current
as a function of the same constants and the time measured from the beginning
of the formation of a given drop (the maximum instantaneous diffusion current),
the numerical term, 607, is replaced by 709.

It has been established over the course of years of polarographic experimenta-
tion that the concentration dependence of the current, as expressed by equation
1, is satisfactory. In other respects, however, such as the time dependence of
the current, the relationships expressed by equation 1 or its more general forms
are inadequate. In response to these inadequacies, progressively deeper and more
sophisticated theoretical analyses of the problem have appeared in the litera-
ture. At the present time, certain of the discrepancies between theory and ex-
periment have been removed, but the most serious difficulty, the erroneous
time dependence of the current as expressed by the Ilkovie equation, remains.
At the same time, the mathematical treatment has become increasingly rigorous.
The conclusion is almost inescapable that the problem has been incorrectly
stated mathematically and that a postulatory revision is necessary.

The purpose of the present study is to examine the theory of the current at a
dropping electrode in the most detailed way.

B. THE MATHEMATICAL BASIS OF DIFFUSION THEORY
1. Electrode processes and diffusion

In any chemical problem which involves reaction at a surface, & complete
solution requires some consideration of the rate at which reactants reach the
surface and/or the rate at which products are withdrawn. This problem is not
encountered in homogeneous reactions, where a uniform time-average molecular
density is found and where no surface is required to cause reaction to occur.
However, in heterogeneous reactions involving a surface at a fixed position with
respect to the reactant phase, diffusion gradients are set up, and the mech-
anism of diffusion becomes important.

Prominent among surface reactions are those occurring at electrodes im-
mersed in solutions. Here, electrons are added to or removed from a chemical
species, leaving it changed in nature. If this electron transfer is very rapid,
then the rate of reaction depends upon slower steps in the total process, such as
the rate of supply of reactive species to the electrode surface. Therefore, when
stirring is absent and other chemical reactions in the solution do not interfere,
the rate of the electrode reaction will be controlled by diffusion only. In elec-
trode reactions the rate is simply given by the current, since the current repre-
sents the number of charges, i.e., electrons, transferred per unit time. This
quantity is related to the flux of matter by Faraday’s laws of electrolysis. By
analysis of the diffusion problem, the flux at the electrode surface and therefore
the current can be determined. The current so determined is called the diffusion
current.
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2. The equation of continuaty

The flux may be defined as the rate at which matter is transported across a
surface S at a point P, per unit area per unit time, and it will be denoted by
¢. The unit of mass to be chosen is the mole, so that the dimensions of flux are
LT,

It will be convenient to define an isomolar surface. Consider a solution with a
concentration distribution defined by a scalar function of position and time, C.
It may be supposed that there is a surface passing through this solution, every
point of which at some instant possesses the same value of the concentration
function. This surface of constant concentration may be called an isomolar
surface. An infinity of such surfaces may be described and no two may cross
each other, since this would imply the existence of points in the solution having
more than one value of concentration. Such surfaces separate parts of the solu-
tion which are more concentrated from parts which are less.

Consider a closed region in the solution bounded by a surface S, not naces-
sarily isomolar, and having a volume V. The rate of flow of matter into this
region, dV/d¢, in moles per second, may be represented by taking the surface
flux, ¢s, at every point on the surface, multiplying it by the differential area
at that point, and summing these over the entire surface. That is,

dN .
7=L%® )

But every point P of the surface will be crossed by some isomolar surface, for
which the flux vector® at P is ¢.. Therefore, if the unit normal vector to S at P
is 8, the scalar ¢ in equation 2 can be written as a vector dot produet,

s = &n8 (3)
Using this, equation 2 becomes

dN
dt f¢n 8 d;s (4:)

[Lquation 4 may be transformed into a volume integral by applying the di-
vergence theorem of vector analysis:

D= [fesas=[[[avea K

Alternatively, the rate of flow of matter into S may be described by con-
sidering the rate of change of concentration with time in each differential volume

and integrating over V:
W= [[[Lar ©

In the absence of any sources or sinks of matter within S, the sum of the ex-
pressions given by equations 5 and 6 must vanish,

fff[mvm ]dV— )

® Vector quantities are underscored.
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and therefore, for every V,
ac

5= —div ¢, (8)

Equation 8 is the form of the equation of continuity applicable to diffusion.

3. Fick’s law and the diffusion equation

In the present case, the flux can originate through either diffusion or convec-
tion. The fundamental postulate of the general theory of diffusion states that
the normal flux at a point P on an isomolar surface is proportional to the con-
centration gradient at P, i.e.,

¢, = —Dgrad C = —D(igr_l )
an
Equation 9 is a statement of Fick’s law in vector form. D is the diffusion co-
efficient with units of square centimeters per second, 9/dn represents differenti-
ation along a normal to the isomolar surface, and n is the corresponding unit
normal vector.

If, in addition to the diffusion flux, the solution as a whole is subject to con-
vective forces, there will be translation of points on the isomolar surface itself
with vector velocity u. This motion will be responsible for a flux of magnitude
uC, having the same direction as that of the velocity.

Therefore, in the general case the total flux will he given by the expression

¢, = —D grad C + uC (10)

By introducing this expression for the flux into equation 8, a general equation
for diffusion and convection is found:
%g = —div (=D grad C + uC) = v-(DVC) — V-uC (11)
Equation 11 as it stands is quite general and could serve, for example, to
describe the motion of moisture through an inhomogeneous, stratified solid.
A liquid, however, is obviously homogeneous and isotropic. This means that for
the present case the diffusion coefficient, D, is independent of the codrdinates.
Accordingly, equation 11 may be written

%’ = DV'C — v.-ul (12)
Equation 12 was first given, without derivation, by MacGillavry and Rideal (21).
Since no coérdinate system has thus far been assumed, the Laplacian operator,
V2, can be immediately written down in terms of whatever cotrdinates seem
appropriate to a given problem. The form of the divergence term will depend
partly upon the nature of the convection velocity, u. For cases in which u is
zero, that is, for pure diffusion, the diffusion equation takes the following forms
in rectangular and symmetrical spherical regions, respectively:
aC 8’C | 8*C |, &°C
=D [é—xz‘z‘ + +

=+ 5 (13)

ot



THE POLAROGRAPHIC DIFFUSION CURRENT 1051

aC _ Do {00\ _ .[dC , 26C
aT‘?z&i(Ts?)‘D[W““;a;} (14)

Only one case for which u is not zero will be considered in this work, the case of
the symmetrical spherical region. Equation 12 here becomes
aC D g (.0C 19,2 .
R AN L R 1
ot re or <r 6r> 7% Jr (ruC) (15)
The assumption is made, in finding solutions for equation 12, that the diffu-
sion coeflicient, D, is independent of concentration. This assumption is neces-
sary to keep equation 12 within the class of linear differential equations. The
alternative would involve mathematics of a much higher order of difficulty.
It appears that the discrepancies resulting from this assumption are not too
serious provided D is properly chosen.

4. The boundary value problem for electrodes

In attacking a given diffusion problem, solutions of equation 12 which satisfy
some specified conditions for given values of the independent variables will be
sought. These conditions are the boundary conditions, and the problem thus
constructed is a boundary value problem. Theoretically, the number and char-
acter of the boundary conditions required would depend on the nature of the
differential equation. Actually, a good deal depends on the specification of the
physical problem, since, as will be seen, it is difficult to transcribe a physical
situation into mathematical terms. In each of the problems to be attacked in
this work it will be found that, with one exception, & total of three boundary
conditions will be sufficient to produce a physically reasonable solution. Such
solutions will be purely formal in that, although they will satisfy the differential
equation and the boundary conditions, no attempt will be made to show that they
are unique or to define the further conditions under which they will be unique.
This mathematical shortcoming should offer no difficulty, since the ultimate
criterion for any solution will be comparison with experimental results.

Thus, the mathematical program required to determine the formula for the
current is the construction of a boundary value problem, followed by its solu-
tion. This solution will be a formula expressing the instantaneous coneentration
at any point in the investigated region. The flux may now be found through the
use of equation 9. The flux is then evaluated at the particular value of the space
codrdinates which correspond to the electrode surface. The current is the product
of the flux at the electrode surface, its area, and the Faraday constant.

C. THE DROPPING MERCURY ELECTRODE
1. Physical description

The dropping mercury electrode is exceedingly simple in construction. A short
(5 to 10 em.) length of capillary tubing with a bore of the order of 0.05 mm. is
connected, perhaps by rubber tubing, to a mercury reservoir whose height is
adjustable. The tip of the capillary is inserted beneath the surface of the solution
to be electrolyzed. The height of the reservoir is adjusted to some position from
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25 to 75 em. higher than the capillary tip. Under these circumstances, mercury
falls dropwise from the capillary tip into the solution, the drop lifetime being of
the order of 4 sec. A current lead is inserted into the mercury. The rest of the
electrical circuit is not essential to this discussion; it consists of a reference
electrode, also in contact with the solution, a potentiometer bridge for applying
a controlled potential across the electrode system, and voltage- and current-
measuring devices.

Thus, current will flow while o given drop is pendant and cease as the drop
falls, only to grow once again during the formation and growth of the following
drop. It is the detailed analysis of the time dependence of the current during
the life of a single drop which is of concern here.

2. Idealizing assumptions

The following idealizing assumptions are usually made for purposes of mathe-
matical analysis:

(1) The potential of the electrode, i.e., the potential impressed on the elec-
trode by the bridge circuit, less the cell 7R drop, is considered to be set at a
large enough value so that electrolysis of the electroactive material in solution
is occurring measurably; for simplicity, it is usually assumed that the potential
is large enough to deplete completely the layer of solution next to the electrode
surface. Under these circumstances, the limiting diffusion current would be
measured. In any case, the potential is considered to be increasing at a slow
enough rate so that the potential is essentially constant during the drop lifetime.

(2) The mercury drop is spherical throughout its lifetime; changes in shape
at the beginning of drop formation or at the time when the drop begins to sepa-
rate and fall are to be ignored. High-speed photographs of drop growth (22)
have shown this assumption to be essentially correct.

(8) The drop is isolated; no consideration is to be given to the asymmetry of
the diffusion region because of the presence of the capillary tube tip above the
drop.

(4) The volume rate of drop growth is to be considered constant. This assump-
tion is not accurate and will be given more detailed consideration later. In all
the analysis to be considered, however, the mass rate of flow of mercury is de-
fined as the average of the true instantaneous mass rate over the drop lifetime,
a quantity which can be measured experimentally. Denoting this quantity by m,
it is easily seen that the radius of the mercury drop at any instant is given by the
expression

3 3mi
7‘0 =

47d (16)

where d is the density of mercury (13.6 g./cm.?) and ¢ is the time. The constant
quantity 3m/4rd will be denoted by the symbol ».

(6) The drop is motionless with respect to the solution except for growth.
Actually, the center of gravity of the pendant drop must move downward with
time. This does not appear to have any serious consequences to the analysis.

(6) The solution in which electrolysis is occurring is considered a body of
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indefinite extent, with a constant bulk concentration, Cy. At any time, therefore,
the concentration around the electrode must approach the value C, for suffi-
ciently large values of the space variable. This condition is somewhat loose, and
can be made more stringent, as will be seen later.

(7) The diffusion at a single drop is independent of the history of other drops.
That is, the initial concentration distribution as the drop begins to form is con-
stant in space and equal to Cp. This implies that the relaxation time of the
inhomogeneous concentration distribution around the electrode tip caused by a
given drop is small compared with the interval between the falling off of one
drop and the beginning of the formation of the next. This assumption is com-
mon to all the literature on this subject; it is, however, the least realistic of all,
and its replacement by a more convineing initial condition is the basis for a
recent attack on the problem (23, 24).

In addition to the assumptions listed, a host of important but self-evident
conditions must be tacitly accepted: freedom from stirring motion in the solu-
tion, adsorption phenomena at the electrode surface, ete.

II. MataEMATICAL EvALuAaTION OF PROPOSED THEORIES
A. INTRODUCTION

In the following section the mathematical formulations and solutions of the
problem of the current at a dropping mercury electrode proposed by a number
of authors will be given a detailed examination. Any physical or mathematical
errors in their respective procedures apparent to the present or other past
authors will be pointed out and, where the situation warrants, derivations will
be carried through in corrected form, to determine the mathematical conse-
quences of inappropriate or erroneous steps in the formulations or solutions. In
all cases, some attempt will be made to evaluate the contributions of each author
to the general progress in understanding the current—time relation.

The solutions to be considered fall into several groups. Ilkovie (12), Maec-
Gillavry and Rideal (21), Strehlow and von Stackelberg (32), and Kambara
and Tachi (15) all used the “differential” approach, consisting of the solution
of the diffusion equation with appropriate boundary conditions. Ilkovie (10),
von Stackelberg (30), and Matsuda (25) used an “integral” approach, in which
the problem is formulated in the form of an integral equation. Finally, the solu-
tion of Lingane and Loveridge (19) makes use of an ingenious modification of
the original solution of Ilkovic to improve the current equation.

B. THE SOLUTION OF ILKOVIC

The earliest solution of the diffusion problem for the dropping electrode was
given by Ilkovic (12), and the resulting equation bears his name. In construction
of the boundary value problem, he makes no use of the general diffusion-con-
vection equation (equation 12). Instead, he writes the total differential for C
as a function of x and ¢, where z is the distance from the drop surface to a point

in the solution:
_ aC) oC
dC = (a tdx + <E>z dt (17)
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Representing by v the velocity of motion of the solution relative to the drop
surface, i.e., dz = —uvd¢, the total differential expression may be put into the

form:
dc _ (eC\ _ (aC
&~ (at>, v <%>t (18)

The ordinary derivative on the left Ilkovie regards as the change of concentra-
tion with time at a point which moves with the solution. He reasons that the
value of this derivative is unaffected by convection, so that this term can be set

2
equal to D g&:—g, after equation 13. Thus,

aC\ _ . o°C aC
(G0). =25+ (&), ao

The partial derivative on the left corresponds to the concentration at a point
fixed with respect to the electrode surface.

This formulation, which appears to be a linear approximation to the three-
dimensional situation, is inconsistent with the results of the rigorous develop-
ment given in the previous section. To see the extent of the approximation in-
volved, equation 19 may be compared with the rigorous equation, equation 15.
To do this, it is first necessary to perform a transformation of independent
variable in the latter, according to the following equations of transformation,
in which r is the variable radius and 7, is the drop radius at time ¢:

r=r—r (20)
T =1 (21)
The identity transformation, equation 21, is included for generality; r is an
artificial symbol introduced for manipulative convenience and is replaced by ¢

at the end. When the respective derivatives are evaluated and introduced,?
the form of equation 15 appropriate for comparison is:

a_c_*_D(a“’c 2 @)_ 1 3
ot 0x2 ' 1o+ x 3z (ro + x)* oz

dryoc
di dx

[(ro 4+ 2)*uC] + (22)
There are essentially two differences between this equation and equation 19.
In the latter there is no term of the form

2D 3¢
x ox

which means, qualitatively, that the effect of the curvature of the spherical

region on the diffusion is being ignored.
Secondly, the relationship of the respective terms on the right of each equation

3 Derivations and discussion of items indicated by footnote reference 3 will be found in
the appendix to reference 23, pages 220-52.
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which have to do with convection depend on the choice made for » on the one
hand and w on the other. It is evident from equation 16 that
dro —d, sus _ 147 _ v o
s S == (23)
Further, because the liquid solution is effectively incompressible, each point
in it has a velocity with the same proportionality to the inverse of the radial
distance squared, i.e., at any point,

(24)

With the introduction of these values for the radial convection velocities into
equations 19 and 22, the convection terms in the respective equations becorme

identical:
vl 1 1 10
3 [;‘—3 >7‘o + x)z] dx @

Thus the discrepancy between Ilkovie’s differential equation and the rigorous
one lies only in the omission of the curvature term.

However, either because the equation in this form was too difficult to solve
or because he did not perceive the relevance of equation 24, Ilkovic used a
different method of expressing v in terms of « and {. By restricting the range of
x o that at all times its product with the surface area of the drop is a constant,
he is led directly to an expression for v in terms of the drop surface area. For,
if Ax = constant, then
dx d4 .
From equation 16, thesurfacearea of the drop is 4= (vt)*%. Thus dA /dt is 8my?/3/ 341
and v is 2¢/3t. Upon introduction of ¢ into equation 19,

aC 8’C | 2z aC )
- Pwtia @)

If substitution is made for v in equation 22, such that v = 2z/3t, the convection
term assumes a much different form from that in equation 27. It can be concluded
that, whereas in equation 19 only the drop curvature is neglected, equation 27,
that actually solved by Ilkovie, also expresses the convection effect imperfectly.

These considerations apart, Ilkovie’s expression for v is most restrictive.
Consider the annular volume between a sphere of radius 7, and a concentric
sphere of radius ro + z. The volume, V,, will be given by

el + 0 — #3) (28)

Va 3

= %m:(?)rg + 3rex + 2°) i29)
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Thus, for x very small compared with ry,
Vo = drroe = Az = 4x(yt)23 (30)

Therefore equation 27 will hold only for values of 2 so chosen that the annular
volume remains constant in time. Once V, is chosen, therefore, z becomes a
specified function of the time. This would lead to difficulties in satisfying the
boundary conditions at # = 0 and at ¢ = 0, which can be avoided only by making
V. the independent variable.

Ilkovie, in taking account of this situation, does not explain himself very well,
so that a certain amount of misunderstanding exists in the literature on the
subject (15). He gives the impression that equation 27 is the final equation and
that subsequent alterations are part of the solution. Actually, the next step is
essential in formulating the boundary value problem. A variable u (unrelated
to the symbol u used in the present text) is introduced, having the value z2/3.
Since this quantity has the form of the annular volume as given by equation 30,
this substitution represents the change of independent variable suggested in the
preceding paragraph. The new equation is

aC 8°C s

= = D 5a5t (31)
The boundary conditions are

Clu,0) = C, (32)

O, 1 =0 (33)

This formulation neatly sidesteps the difficulty raised by the nature of the con-
vection term introduced earlier. Both conditions are obviously physically sound.

Ilkovie’s solution of this problem is available in detail (12) and will not be
pursued further here, except to state that it makes use of a variation of the Four-
ier integral theorem in forming a linear combination of particular integrals and
satisfies the boundary conditions in an ingenious fashion. Ilkovie presents the
solution

O, ) = 20 [ S8 el — 3D g (39
T Jo B

but points out that it is unnecessary to perform the integration, since the flux
at the drop surface is the quantity desired. Differentiation of equation 34 with
respect to x and evaluation of the result at z = 0 yields

oC Co

— -y er——— 3—

(ax>o /8Dt (35)

If the scalar flux from equation 9 is written out, it is immediately seen that the
flux at the electrode surface, that is, the origin of z, is given by

¢ = —D (%g)o (36)

Further, the total amount of material reaching the electrode surface per unit time
must be given by the product of the flux and the electrode area. The unit of
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mass here is the mole; consequently, the current will be the product of the num-
ber of moles reaching the electrode surface per unit time and the number of
coulombs per mole. The latter is simply nl", where 7 is the number of equivalents
per mole and F is Faraday’s constant (96,500 coulombs per equivalent). Thus
the current is

i = nFCy-drri- 347Dty D (37)

By introducing the value of 7, from equation 16 and lumping the numerical
constants, it is found that

3 = 0.732nFCom=EDr2i/e {38)

In this equation, concentration is in units of moles per cubic centimeter and the
mass flow rate of mercury, m, is in grams per second, giving the current in
amperes. In order to have the equation in more convenient laboratory units,
the concentration should be expressed in millimoles per liter, m in milligrams
per second, and the current in microamperes. When the necessary dimensional
constants are introduced and the value of F included, equation 38 becomes

¢ = 709nC D' 2m2/3g e (39)

This equation gives the instantaneous value of the current, which evidently has
the form of a sixth-order parabola in the time. It is sometimes convenient to
know the time-average current, which can be found by integrating equation 39
over the time and dividing by the drop lifetime, 7:

6. 709 - 7 = 607nCo D' (1)

t16

- - i 1 /T 1/6
= N dt =
7 709 R A t ¢

~1

Equations 1 and 39 are the best-known forms of the Ilkovie equation. As has
been stated earlier, the time dependence predicted by equation 39 is not experi-
mentally correct.

C. THE SOLUTION OF MACGILLAVRY AND RIDEAL

Though Ilkovie gave the first solution for the problem of the dropping mercury
electrode, the best-known treatment was given by MacGillavry and Rideal (21).
Their analysis is reproduced with some simplification in the most widely used
monograph on polarography (16), and the treatment has been characterized as
“rather rigorous” in a recent monograph on electrochemical methods (9). It is
generally felt that the shortcomings in the result are caused by excessive ideali-
zation rather than by mathematical defects. It will be shown that this is not
the case.

MacGillavry and Rideal begin the formulation of the boundary value prob-
lem with equation 15 for diffusion and convection in a symmetrical spherical
region. When the convection velocity, «, given by equation 24, is introduced
into the convection term, equation 15 becomes
9C _ D<020 g@) v 9C

i i {
ot 37 dr 40)

or? 7 or
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A new codrdinate system is introduced at this point, the equations of trans-
formation being

=1 — =1 =yt (41)

T =1 (42)

The new independent variable, p, can be visualized as the radius of a hypothetical
sphere whose volume is equal to that enclosed between concentric spheres of
radii 7o and r. The transformed equation? is

9C_ p it " [p 7Ly <"3 - 7t> 99} (43)
at e° ap* p° + vt/ dp

This transformation may be verified by beginning with equation 12 and intro-

ducing p as an independent variable at the beginning, observing that in the

(p, t) system the radial velocity, u, is zero. This vanishing of the convection term

is the chief value of the change.

The next step is critical. The authors seek to put equation 43 into a more
readily integrable form. They reason that, since the region of interest is that
volume of solution which is very close to the drop, the quantity p* can be as-
sumed to be very small in comparison with v, the drop radius. Thus, equation 43

can be simplified to
aC o (yt)*" [ o’C ac}

This assumption has been correctly criticized (32) on the ground that the
thickness of the diffusion layer is much larger than this estimate acknowledges.
A related defect lies in the ambiguous nature of the functional dependence ex-
pressed by equation 44. It is clear that the transformation which carried equa-
tion 40 into equation 43 is perfectly appropriate. C becomes a function of two
variables, p and ¢, the former of which is exactly specified for any given values
of r and . With the simplification leading to equation 44, quite a difference ob-
tains. C is now a function of two variables, p and £, the former of which is confined
to a certain region depending on ¢; ¢ becomes the only really independent varia-
ble. This results from the specification that p® < v¢. Thus, if equation 44 is to
be treated formally as a partial differential equation, the special character of the
independent variables must be kept in mind.

A further change of independent variable is made at this point, given by

=, (45)
y = t71'3 (4:6)
With these changes, and the introduction of a constant,
3 = Zp (47)
the differential equation becomes
2
aC ar a°C (48)

ay T ax?
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The boundary conditions are formulated from the requirements that the con-
centration be uniform and equal to a constant, C,, throughout the solution at
the start, and that it vanish at the electrode surface afterwards. Thus, in terms
of r and ¢, p and ¢, and z and y, respectively,

C(r, 0) = Co (49)
c0,H=0 (50)
Clp, 0) = Cy (51)
C,t) =0 (52)
C(z,0) = o (53)
C0,y) =0 (54)

These are the only conditions explicitly stated by MacGillavry and Rideal.
Equation 48 and conditions 53 and 54 thus constitute the boundary value
problem to be solved. As shown later, the problem thus stated is incomplete.

No procedure for the solution of this problem is given by MacGillavry and
Rideal. They simply introduce, as ‘“the customary solution of interest in dif-
fusion problems,” the following expression involving the error function, sym-
bolized erf:3

z
C =4+ Berf <2\/m> (55)

MacGillavry and Rideal introduce boundary conditions 53 and 54; after trans-
formation to the (p, {) codrdinate system, the expression for the concentration is

) 1 7 1/2 3 N

C = Cyertf {(—5 <§l—)y> ZV-;m} (56)
It is not necessary to introduce the reciprocal of transformations 41 and 42,
since it is only the flux that is desired. Differentiation of equation 56 with respect
to p and the subsequent mechanical operations necessary to find the current are
presented in the original paper. The resulting expressions for the instantaneous
and average current are identical with those derived by Ilkoviec, equations 1 and
39; however, the concentration function obtained as a solution of this problem
(equation 56) is not identical with that of Ilkovie, equation 34.

The following consideration will show that equation 56 is an erroneous solu-
tion under the conditions imposed on the problem. A solution for equation 48
is sought. Let the operational method be formally applied to equation 48. In
the notation of Churchill (8), let

L {Cx, )} = e, 9)
Then the Laplace transform of equation 48, using coundition 53, is

st — C(J = ] ((ii;;

(57)
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This ordinary differential equation is to be solved, subject to the transform of
the remaining boundary condition (equation 54):

0, 8) = 0 (58)

The solution of the homogeneous part of equation 57 is

— .
€ = kexp (— /‘/ ’qu x) + k. exp < % :c) (59)

where k1 and k, are arbitrary constants. In addition, equation 57 has a particular
integral, Cy/s. The general solution is therefore

é=A'lexp<—V%x>+kgexp<V%x>+% (60)

Since there are two arbitrary constants in equation 60, two boundary conditions
are required for their evaluation. It will be recalled that MacGillavry and Rideal
provided only two. Of these, one has been used in equation 57; consequently,
only one is still available for use with equation 60. For MacGillavry and Rideal
to have achieved solution in the form of equation 55, one other boundary condi-
tion was needed; by investigating the effect of various boundary conditions on
the form of the solution, the nature of the unstated, but essential, missing condi-
tion can be determined. Let it be assumed that this condition is a restriction on
C as z approaches some boundary point other than zero. Immediately, a diffi-
culty arises. MacGillavry and Rideal have specified in their simplification of
equation 43 to equation 44 that p is to remain small in comparison with ¢, i.e.,
the equations are applicable only to a region close to the drop surface. Let this
important restriction be ignored, however, and allow the introduction of the
following (improper) houndary condition:

lim &(x, s) = g;—" (81)

Equation 61 is the transform of
lim C(z, t) = C (62)

which would itself be derived from a condition of the same form in terms of the
original variables, r and ¢. This condition is accurate, physically, but, as has
been shown, its use is mathematically erroneous.

Inspection of equation 60 shows that condition 61 requires ks to be zero;
otherwise, the second term on the right would increase without bound as «
passed to the limit. The remaining arbitrary constant, ki, is evaluated using
condition 58. The solution of the transformed boundary value problem follows:

S

e—~%@—V%I+C° (63)

The inverse transform of equation 63, when appropriately rearranged and the p
codrdinate reintroduced through equations 45 and 46, is identically the result
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of MacGillavry and Rideal (equation 56). Thus it has been shown that the in-
clusion of a mathematically inconsistent and therefore proscribed boundary
condition (condition 61) is essential in order to achieve the solution presented
by these authors. Consequently, equation 56 is an erroneous solution of the
boundary value problem as stated.

It is of some interest to find the solution to the problem of MacGillavry and
Rideal subject to conditions which actually do reflect the restrictions implicit
in their differential equation. Let § be a constant equal to the maximum per-
missible value of 3, and therefore the maximum permissible value of 2 under
the condition that p* 3> vt. Then, if it were true, as MacGillavry and Rideal
believe, that outside of the region limited by & the concentration is unaffected
by the electrolysis, a solution of the diffusion problem would have to satisfy the
expression:

lir;l Clz,y) = Co (64)
The solution for the boundary value problem consisting of MacGillavry and
Rideal’s simplified equation (equation 48), together with the appropriate hound-
ary conditions 53, 54, and 64, is®:

) o gita @427
Cla,y) = 00[1 + Z{erf SN TR T }]

i=0
The series in equation 65 is rapidly convergent for small y, which is the case
here. This solution satisfies the differential equation as well as the boundary con-
ditions. As & becomes larger, convergence is more and more rapid, until, as
8 — =, the solution retains only the first term of the series:

Clx, ) = Cy [] 4 erf (5\—;%) - l:l = (y erf <Ejﬁ> (66)

This rapid convergence is a consequence of the fact that erf « = 1. Note that
equation 66 is identically the concentration function of MacGillavry and Rideal
{equation 55).

The current corresponding to the concentration distribution of equation 65
can be calculated by a procedure exactly analogous to the one given in the dis-
cussion of Ilkovic’s work. The result® is

(65)

i = 709nC, Dl"zmz"%l"’s{1 + 2> exp(— ja)z} (67)
=1

where « is defined by
a = 100 sm—3=e -1/ (68)

The units are those which are conventional in experimental work, as presented
earlier.

The first term of equation 67 is identical with the equation derived by Ilkovic
and by MacGillavry and Rideal. If the value of o? is very large, e.g., 10, the
terms in the summation would be negligible, On the other hand, if the exponent
is small, the series terms would be large and the series would converge slowly.
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To decide this point, it is necessary to have some estimate of the size of §. This
gquantity has the dimensions of a volume; it can be interpreted as the annular
shell about the drop within which, at any instant, the concentration is different
from (and less than) that in the bulk of the solution.

It will be recalled that MacGillavry and Rideal assumed that the quantity
p® is much smaller than +¢, the drop volume, i.e., that

o=t
Pyt ' (9
Now a trial substitution will reveal that if the quotient p®/y¢ remains less than
0.01, this approximation will not be in error by more than 2 per cent. é represents
the maximum possible value of p?; consequently, the value 0.01 v¢ can be as-
signed to §. It is true that this assignment is arbitrary and tells nothing about
the possible functional nature of §. However, for an order-of-magnitude compu-
tation, it is perfectly satisfactory.
Introduction of the value 0.01 ~¢ for 6 leads to the following expression for

2.
[ 20

= 3.10 X 10~10m2/3-13D~1 (70)

Now even the slowest moving of solutes have diffusion coefficients larger than
10~7 ecm.?/sec. Thus for a moderate value of the time, e.g., 3 sec., and a usual
value of m, e.g., 1-2 mg./sec., it is evident that the order of magnitude of o?
is at most 1073 (« is, of course, dimensionless). Therefore, the exponent is small,
the series of equation 67 converges slowly (the terms decreasing from 1), and
the series factor must have an appreciable magnitude.

Fortunately, a more rapidly converging series may be utilized to compute ¢
by taking advantage of the following identity (2):

142 Z exp — (nz)’ = \/W{l + 2 Z exp — (—)2} (71)

Using this to evaluate the second factor of equatlon 67, the current becomes

2
= 709nCy D'*m"" ”‘*{ + 2V Zl exp (E)} (72)
-
where o? has the value given in equation 70.

With a value of o2 of the order of 10~2 or smaller, as estimated, the exponential
terms of equation 72 vanish, and the second factor is well approximated by
4/ 7/a. The magnitude of this factor varies from about 500 for the faster moving
ions at relatively large values of the time (10~% ¢m.2/sec., 10 sec.) to about 10
for experimental values at the other extreme (10~7 ¢cm.?/sec., 0.01 sec.). The
Ilkovic equation effectively represents the experimental current to a first ap-
proximation; consequently equation 72, which is the Ilkovic equation multiplied
by the factor under consideration, must be grossly in error. It follows that the
assumption made by MacGillavry and Rideal about the thickness of the diffu-
sion layer is completely invalid.
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D. THE SOLUTION OF STREHLOW AND VON STACKELBERG

The fact that the current calculated from equation 72 is too high by orders
of magnitude indicates that the estimate of the size of the diffusion layer (i.e.,
8 = 0.01 1) is too small. A small diffusion layer implies a steep gradient and
therefore a high current. This discrepancy cannot be corrected merely by intro-
ducing a larger estimate of & into «; this estimate is an integral part of
MacGillavry and Rideal’s formulation of the problem. No change in the estimate
can be made without deriving a new solution in which the form of the concen-
tration function might be completely different.

Such a second-order solution is available. It was first given by Strehlow and
von Stackelberg (32), and, while it is far from rigorous, it represents a better
approximation than that of Rideal and MaecGillavry. It suffers from the same
inconsistency as the analysis of the latter revealed, however, and the same kind
of revision of the solution is necessary.

Strehlow and von Stackelberg begin with equation 43, as derived by
MacGillavry and Rideal, but feel that it is unrealistic to suppose, as do the latter
authors, that p® is negligible compared with vt. They point out that such an
assumption represents the expansion of (p® + t)~/2 and (p* — ~#)*® in Taylor’s
series, only the first term being retained. Thus

o — vt 20° A} 3
——— 1 — s 2 o .. 7
o + vt vt + (vt) + @)
3 4/3 3 3\ 2
p et T by [1 + 2 g(”—) + ] (74)
P 3yt 9\t

Strehlow and von Stackelberg proceed with their analysis by retaining the first
two terms of these expansions. Thus, they are required to solve:

oC _ D 43 4 p3>[ EX _ ( _ /_)i) 30]

The balance of the analysis closely parallels that of MacGillavry and Rideal,
so that the boundary conditions used by Strehlow and von Stackelberg do not
take account of the severe restriction of the region of applicability of equation 75
caused by the approximation made. In addition, certain quantities arising during
the analysis, which are actually time-dependent, are dealt with by making use
of their constant time-average values; this ordinarily dubiocus procedure need
cause no concern in view of the more general difficulties encountered.

The current, expression ultimately derived by their procedure is

¢ = 709nCoDV2m238(1 4 A D 2n—LI%1/6) (76}

This expression is derived from a concentration distribution function which must
be considered erroneous. A detailed solution® which takes into account the limited
range of the differential equation shows that the current is given by

— - AN
i = 709nC, D”f‘m“t”ﬁ{_‘gl' + ?"\g/l Zl exp — (JT}) } (77
P
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where 8 is defined by
10%m=3-10D1(1 + 466) = B(1 + 44e) (78)

and where e, a constant introduced by Strehlow and von Stackelberg, is defined
as the time average of p?/i.

Because of the assumptions made in formulating equation 75, equation 77 will
hold only to the extent that

ot =yt ( ps)

PPt b2 vt @)
is satisfled. By trial, if the value of p? is no greater than 0.1 v¢, equation 79 will
be in error by no more than 2 per cent. Introducing p* = 0.1 4¢ into equation 77,
the exponential terms become, for reasonable values of the experimental quanti-
ties, vanishingly small, and the bracketted factor takes on values ranging from
50 for fast moving ions and relatively large values of ¢ (10 sec.) down to about
1 for slow moving ions and very small (0.01 sec.) values of the time. Again, the
conclusion must be drawn that the size of the diffusion layer has been con-
siderably underestimated.

E. THE SOLUTION OF KAMBARA AND TACHI

Kambara and Tachi (15) have presented a solution which resembles that of
Strehlow and von Stackelberg, but it need not be considered in very great detail
because of an error they make in deriving their differential equation. Briefly,
they introduce a new dependent variable,

¢ =10 = o(r, 1) (80)

and transform to the independent variables used by Ilkovic, 2, the distance from
the drop surface, and #. They write the total differential of ¢ as:

de do
d —_—— —— 1
¢=rdi+ = dz (81)
They then convert the diffusion equation for a stationary spherical surface into

the same system of variables, finding

de _ 6290

dt or?

(82)

Proceeding much as Ilkovic did, and with the same reasoning, Kambara and
Tachi introduce equation 82 into equation 81. Their resulting differential equa-
tion is

) e ¥ <1 1\d¢p

=D —=4-|l5—5)= 83

ot D6x2+3 re  1/)ox (83)
which is erroneous. Direct transformation of equation 40 shows?® that the correct
result is:

de e v (1 _1\de | v
— T — — — —— —_— ——— 4
3t D6x2+3<2 r2>ax+3r3‘° (84)
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It is sufficient to observe of their subsequent procedure that they, like
MacGillavry and Rideal, and Strehlow and von Stackelberg before them, are
forced to restrict the range of their differential equation by an approximation
which is essential to the achievement of a simple solution. Later, in evaluating
boundary conditions, the restriction is ignored. Consequently, their result would
have been questionable in any case.

F. VON STACKELBERG'S INTEGRAL METHOD

It appears that in all four analyses of the diffusion problem which have been
discussed, the concept of “diffusion layer thickness” must be introduced at one
point or another, generally with the aim of simplifying the differential equation.
There exists another approach to this problem, which might be called the
“integral”’ method, as opposed to the ‘‘differential” methods which have been
discussed, in which the diffusion layer thickness is introduced at the start and
is eentral to the solution of the problem. This method appears to be superior,
in general, to the differential method, and, as utilized by Matsuda (25) (¢f. next
section), the integral method provides the most nearly definitive solution to the
Ilkovie problem which has yet been achieved.

The integral method as used by von Stackelberg (30) will be described first.
He defines two different “diffusion layer thicknesses”, an “‘integral” thickness,
A, and a “differential”’ thickness, §, as follows:

2 [~ o

A = 6—0' \/;0 (C - C()) d?‘ “\80)
_ Co (]

b= G 86)

The former quantity corresponds to the thickness of a hypothetical region of the
solution immediately around the electrode, having a volume sufficient to con-
tain the total number of molecules actually reduced up to that time at a concen-
tration equal to the bulk solution concentration of active molecules. The dii-
ferential thickness represents the space coordinate of the intercept of a line
tangent to the concentration gradient at the electrode surface with the line
C = C,. The designation “diffusion layer thickness” for these quantities is mis-
leading, for they are not to be understood as measuring the extent of the region
in which the concentration is inhomogeneous. They are simply numbers which
happen to have the dimensions of length. This is of no importance, however, in
the development to follow.
From the earlier discusssions of the relation of current to flux, it is easily seen
that
_ nFCy - 4mry D
8

Further, since the time integral of the current must be the total amount of
charge transferred, an equivalent definition for A is

2 ft .
= )
T G b 7 dt (88)

(87
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Combining these equations produces von Stackelberg’s integral equation:

t
A = .2;13-) A re ot de (89)

von Stackelberg’s integral equation cannot be solved without more informa-
tion about the relationship between § and A. Such a relationship can be found,
for example, by using the equivalent relationship between the corresponding
functions for a plane electrode or a stationary spherical electrode, functions
which can be calculated from solutions to the problem of diffusion at such
electrodes.

The solutions for the diffusion problems at stationary electrodes are relatively
simple, and the results for the boundary conditions necessary in the present case
are well known (7). Therefore, the procedure involves the determination of § and
A from the available solutions by the use of the defining equations (equations
85 and 86). Some relationship between § and A can thereby be established. Intro-
duction of the relationship into equation 89 produces an integral equation which
can, in principle, be solved for §. 6§ being known, the current can be evaluated
with the use of equation 87.

Though straightforward in principle, this procedure involves certain diffi-
culties. For one thing, there is no theoretical basis for the assumption that & and
A will have the same relationship at a stationary electrode as they will at a
moving one. Secondly, it turns out that the form of the relationship between &
and A usually renders the integral equation too difficult to solve. Therefore, re-
course is usually made by those using the integral approach (13, 14, 15, 30, 32)
to approximations, the deleterious effect of which it is difficult to evaluate. The
most serious objection involves the use of an integration interval which extends
to infinity, inasmuch as the greater part of this interval is generally excluded by
the nature of the approximations made during the simplification. This is related
to the difficulties of the differential approach.

The actual procedures are straightforwardly presented in the literature (13,
14, 15, 30, 32) and need not be discussed here. The nature of the solutions
obtained is of interest.

If the relationship between 8 and A is based on the solution for the stationary
plane electrode, the Ilkovic equation (equation 1) results. If the relationship is
based on the solution for the stationary spherical electrode, a form of equation
76, derived originally by Strehlow and von Stackelberg (32), results. The only
difference among the several versions of the formula for the current derived
from the stationary spherical electrode solution appears in the value assigned
to the numerical constant which occurs in the second term of equation 76. The
values assigned range from 17 to 39. This second term amounts in general to
a few per cent of the magnitude of the first term, and so may be considered a
second-order correction.

G. THE SOLUTION OF MATSUDA

The work of Matsuda (25) represents a nearly definitive solution to the prob-
lem whose solution was originally undertaken by Ilkovic. In the opinion of the
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present authors, Matsuda’s approach is the best-formulated attack on the
problem yet made.

Matsuda begins with the general equation for diffusion and convection, as
introduced earlier:

with initial and boundary conditions “clearly given’ by
C=Cy, (t=0,r>rm) (90)
C=0 t>0,7r=r) (91)
C=0C (t>0r1— @) (92)
rzégzo (t>0,r— =) (93)

Matsuda multiplies both sides of equation 40 by * and integrates both sides
with respect to r from 7o, the drop radius, to infinity. He writes as his result:

a/ (Cy — C)* dr = Dri <%g (94)
Jore=rg

This is not immediately obvious and Matsuda does not elaborate. The inter-
vening steps appear to be somewhat as follows:
When equation 40 is integrated, it becomes

* aC 2 . 2 BC’ w _ z :|U(w)
‘/;o <—6—t_> dr = Dr <6?>:|'o 3 ¢ C(ro) (95)

which, upon application of the appropriate boundary conditions, becomes

©(oC\ » I aC oy
‘/;0 ('5[) r d.T == Dro <-(§?>,o ’3- CO (96)

The function on the left may be expanded according to the rules for differenti-
ating under the integral sign, giving

d * 870

2 2
il " C dr + (O, ¥ (97)
Since C(rg, t) = 0, the second term is zero. Now if the function
a * 2 _ 2 dro . __CO 67"(3) _ __Co 6('yt) _ CO'Y
sl Codr = —(*Co)r, = TR T T8 T — 5 (98)

is introduced, Matsuda’s result, equation 94, follows at once.

At this point Matsuda introduces a new upper limit for the integral in equa-
tion 94. He reasons that since the inhomogeneity of the concentration extends
only a short way into the sclution, it may be considered to be confined within
a radius 7o + 6(¢), where 0 is a function of time and he chooses r, + 6(¢) as his
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new upper limit (the erroneous upper limit printed in the original paper is obvi-
ously a typographical error). Now a change of variable is made, given by

r=r+w (99)
and in terms of the new variable, x, equation 94 becomes
8
%f(%—CMV+@Hx=Dﬁ@$ (100)
0 ox z=0

which ought to be called Matsuda’s integro-differential equation.

In considering this portion of Matsuda’s work it appears, first of all, that
Matsuda’s final boundary condition, equation 93, is in error. It will be recalled
that, while in most cases of diffusion the flux is simply given by —DoC/dr, in
the present problem of interacting diffusion and convection, the flux is given by

al | v
D = + a7 C
Thus at infinity 8C/dr is undoubtedly zero; it is also necessary that the flux be

zero. Therefore, the product <r2%€> cannot be zero, but must be equal to yC/3D.

Upon carrying the analysis through using this condition, it turns out that the

quantity vCo/3 must be subtracted from the right side of equation 94.
Actually, this matter can be adjusted, since, if one derives equation 94 by

integrating equation 40 immediately from 7o to ro 4 8 rather than from r, to =,

one finds directly
E ro+8

2 2 f0C
5., r(Cy — C) dr = Dry <_(§;>r=rg (101)
provided that the following boundary conditions are substituted for those given
by Matsuda:

6,¢{>0 (92b)

@)
Il
)
=
Il

ar

This correction is important in revealing the true nature of the assumptions
necessary to achieve Matsuda’s solution. Both conditions 92b and 93b are inno-
vations in the theory, though it will be recalled that the present authors used a
condition much like 92b in demonstrating the magnitude of the error involved
in some of the treatments discussed earlier. It was pointed out in the discussion
of the “integral” methods that the diffusion layer ‘‘thicknesses” defined there
were only nominal, having only the dimensions, not the quality, of length.
Matsuda, however, intends that there be assumed a real, numerically definite
length, which separates the solution into two regions, one in which the concen-
tration is homogeneous and one in which it is not. Condition 93b defines the
continuity between the regions; it states that there is a flux, to be sure, but only
convection is responsible for it. No flow of matter passes between the regions
by virtue of diffusion.

0 r=26,¢t>0 (93b)
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The only other feature of the derivation of equation 100 which is technically
unsatisfactory involves Matsuda’s method for the transformation of codrdinates
from (r, t) to (z, t). It can be shown, however, that by making this transforma-
tion in equation 40 and then integrating, the same result is achieved.

The method of solution of equation 100 which is used by Matsuda is very
ingenious. The unknown function €, — C is first expanded as a polynomial in
x/6:

To : z\’
Co C_cor0+x<1+jZ=;Aj<§>> (102)
The » unknown coefficients are to be determined by suitable boundary condi-
tions. Note that equation 102 satisfies boundary condition 91 in its present form.
In his paper Matsuda carries out two calculations: in one he sets » equal to 6,
and in the other, » equal to 10. The first calculation will be described.

In order to find the values of the coefficients A4;, Matsuda makes use of the
following additional conditions:

aC 8'C
C6,1) = Co (5_) _ 0 (a_) _

XA 9'C\ &*(ro + x)C]> _
<—a_1«:§>0=z =0 (5&7—4>0=2 =0 < Jz? z=0 =0

Of these, the first and second follow from conditions 92b and 93b. The last
results from the introduetion of the (z, f) codrdinates into equation 40, followed
by setting « equal to zero. The remaining relationships are new. They are logical
extensions of Matsuda’s assumption about the diffusion layer and constitute
further continuity conditions at the interface between inhomogeneous and
homogeneous regions of the solution.

The calculation involved in finding the coefficients is essentially that of solving
six simultaneous equations in six unknowns. The calculation is not difficult and
the result is

(103)

CD_C=

Cor- ’;‘; i [1 -3 <§> + 10 (g) - 15 <§>4 +9 <§)5 -2 (gﬂ (104)

Inspection shows that all the boundary conditions (equation 103) are completely
satisfied by equation 104; for instance, the sum of the coefficients is zero, so that
Co — C is zero when & = 6. The others follow similarly. The only difficulty with
equation 104 enters when r, and therefore i, is allowed to approach zero. It turns
out that 8 is a series in ascending positive powers of ¢; consequently, the ratios
2/6 increase without bound as ¢ becomes small. Thus Coy — C is indeterminate
under these conditions. This ambiguity surrounding the requirements of equa-
tion 90 is the most serious mathematical defect in Matsuda’s work.

Matsuda now introduces equation 104 into equation 102 and carries out the




1070 J. M. MARKOWITZ AND P. J. ELVING

integration. No difficulties arise, and after simplification, the result is a non-
linear differential equation of first order:

gz (3{420 + L4gro6’) = Drl Go + f:;) (105)

The solution of equation 105 is difficult. Matsuda writes
0 = /Dt 2 a;(y DY) (1086)
7=0

intending, presumably, to determine the «; by direct substitution and subsequent
equating of the coefficients of equal powers of ¢. He does not attempt to justify
his use of function 106 and discusses none of its mathematical properties such
as convergence. Dimensional analysis of the physical situation reveals that the
form of the terms of equation 106 is only one among a number of reasonable
possibilities. There seems to be no @ prior: reason for Matsuda’s use of this
particular functional form.

Matsuda gives no exact procedure for the solution, but the present authors
carried out the calculations in the following manner: o = (y#)'/® was introduced
in equation 105, and both sides were multiplied by 6. The first four terms of 6
from equation 106 were substituted into equation 105. To evaluate 62, the Cauchy
product 8 X 6 was formed in the form of an array, retaining four terms. After
simplification, the first derivative of the quantity in the parentheses of equation
105 was found, and arranged in the order of ascending powers of {. A new Cauchy
product was now formed between this quantity and 6. Coefficients of like powers
of ¢t (the powers are all fractional, of the form n/6, where n is an integer) were
collected and set equal to zero. The set of equations so formed could be solved
for the coefficients «;. Matsuda’s result is

9 = V/DU2/3 + (DI — 19454/3(ym1DuzIey
+ 8384575 (y DI — -] (107)

Since the current is given by the product of Faraday’s constant, the electrode
area, and the flux at the electrode surface, it follows from cquation 104 that:
. S 1,3

1 = dernFDCy { = + = (108)
0 )
The quantity in parentheses can be evaluated by using equation 105. Matsuda’s
final result, after adjusting the dimensions to experimental quantities in the
usual way, is

7 = T00nCDV2m2/3Vs[1 + 35.5(DVim—1348) 4= 266(D2m~tA8): — ...1  (109)

A second calculation carried out by Matsuda for » of equation 102 equal to
10 yields the same equation with respective constants in the series, 1, 36.3, and
343, In actual magnitudes the first three terms, using reasonable experimental
values for D, m, etec., have the approximate ratio 100:3:0.3.
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Matsuda executed the same calculation once again under somewhat different
assumptions to determine the magnitude of the shielding effect of the capillary
tube. The upper part of the depleted shell of solution surrounding the drop is
cut by the plane tip of the capillary. Actually, therefore, the integration in equa-
tion 100 should be carried out over an unsymmetrical spherical region, bounded
partly by a plane. The result of this calculation is to show that the values of the
respective constants in equation 109 should become 1, 23.9, and 62.9.

The special virtues of Matsuda’s work are two: It is capable of indefinite ex-
tension to greater and greater precision simply by increasing the value of » in
equation 102. Of course the labor of the calculation is increased thereby. Sec-
ondly, there is no question about any approximation of the extent of the diffusion
layer thickness. 8 is developed, by this method, in such a way as to make a solu-
tion, previously chosen only to satisfy the boundary conditions, satisfy the
differential equation as well. This is in complete contrast to the usual method,
which is to find a solution for the differential equation, and then to modify this
solution to suit the boundary conditions. No doubt the concentration function
derived by Matsuda’s procedure is an approximation; nevertheless, the expres-
sion for the flux, which depends only on the thickness of the diffusion layer,
ought to be reliable.

H. THE SOLUTION OF LINGANI AND LOVERIDGE

The contribution of Lingane and Loveridge (19), which appeared simulta-
neously with that of Strehlow and von Stackelberg (32), is actually not so much
a formal solution as an ingenious and simple pragmatic correction to the Ilkovie
equation (1) which brings it into the form of equation 76, the two-term equation
of Strehlow and von Stackelberg, while at the same time going far toward
making the differences between equation 1 and equation 76 more explicable
physically. Lingane and Loveridge noticed that the constant (34)12, which ap-
pears in the expression for the surface concentration gradient derived by Ilkovie
(ecuation 35), is the only factor which distinguishes equation 35 from the corre-
sponding expression for diffusion at a stationary plane electrode:

aC _ Gy
(). v o

Thev hypothesized that the factor (34)12 takes account of the effect of the con-
vection due to drop growth on the magnitude of the flux; they considered, there-
fore. that the Ilkovie approach correctly accounts for the growth factor but not
for the drop curvature. To overcome the latter defect, Lingane and Loveridge
introduced the factor (34)1? into the expression for the surface concentration
gradient at a stationary spherical electrode, as a multiplier of the factor (D)7,
wherever the latter occurs. They derived the equation for the current from this
modified flux expression; their result, after simplification, is identical with equa-
tion 76 except for the numerical value of the constant A, for which they find 39.
It will be recalled that the solution of Strehlow and von Stackelberg takes ac-
count of both drop curvature and drop growth; thus the remarkable result of
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Lingane and Loveridge appears to confirm their supposition that the drop-
growth convection effect is reflected by the constant (34)'/%.

I. SUMMARY

The theory of the current at the dropping mercury electrode has passed
through a series of developments, each more sophisticated than the last, culini-
nating in the work of Matsuda (23), who has carried the mathematical part of
the theory to a point of great rigor and whose method is capable of extension
(at the cost of computational labor) to any degree of accuracy. It now remains
to be seen to what extent the results of the theory fit the experimental descrip-
tion of the eurrent-time relation.

A striking feature of the theoretical work which has been done on this problem
lies in the close similarity of the equations for the current as derived by different
authors by diverse approaches, some of them, as has been shown, seriously in
error. At the same time, the concentration functions derived by the various
authors, from which the surface flux and current are culeulated, have differed
greatly. For example, equation 1 was derived by hoth Ilkovie (12) and
MacGillavry and Rideal (21) by different methods; the corresponding concen-
tration functions, given by equations 34 and 56, differ greatly. It appears that
while the concentration functions are quite sensitive to the means of analysiz,
their slopes at the electrode surface are not.

ITI. ExpeEriMENTAL EvavruaTion or Prorosed THEORIES
A. THE EXPERIMENTAL CURRENT-TIME VARIATION

A thorough discussion of each of the factors which affect the diffusion current
will be found in Chapter IV of the well-known monograph by Kolthoff and
Lingane (16). The prevailing evidence indicates that the Ilkovic equation and
its modifications can account more or less satisfactorily, at the practical level,
for the influence of each of the many factors which affect the diffusion current.
In detail, however, there are discrepancies between theory and experiment; in
particular, the time dependence expressed by the Ilkovie equation is inadequate.
The time dependence is the concern of this study, and the following discussion
will relate only to this factor, whose primary importance to the physical theory
of polarography is self-evident; if the current-time relation predicted by theory
is experimentally not realized, the theory itself becomes suspect.

The earliest experimental evaluations of the Ilkovie equation seemed to bear
out the one-sixth power law predicted (11). More recent work (3, 13, 18, 20, 27,
28, 20, 31, 33), however, using more refined experimental methods, has tended
to contradict the early results. The discrepancies which have come to light are
of two sorts: first, it has been shown in many cases that the experimental average
currents are appreciably lower than those predicted experimentally; secondly,
careful studies of the current as a function of time have shown that the one-gixth
power time relation indicated by the Ilkovie equation is not obeyed at all during
the first third of the drop life and is obeyed only approximately during the final
two-thirds. Only slight improvement is realized by using the time law predicted
by one of the modified forms of the Ilkovie equations.
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Of the data which are available on the current-time relationship, those of
Taylor, Smith, and Cooter (33) are the most detailed, particularly at small
values of the time. They investigated this relationship for a rather restricted
situation; they give detailed data for two drops, obtained under fairly typical
and nearly identical experimental conditions. Their data include specification of
neither the head of mercury used nor the physical dimensions of the capillary
used; this is unfortunate since, as will be shown, it makes the calculation of initial
and final m-values impossible.

MacDonald and Wetmore (20) present data on the reduction of copper(II)
ion, for which they are able to evaluate the diffusion coefficient with much greater
accuracy than is usually the case. Their data cover a range of concentrations and
a range of drop times, in contrast to those of Taylor, Smith, and Cooter, but are
less detailed at small values of the time.

Lingane (18) presents a variety of curves for two different capillaries, at
different values of the drop time. Unfortunately, no tabulation of the data is
given,
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I1G. 1. The current-time dependence at the dropping mercury electrode, theoretical
and experimental. Curve 1, experimental data of Taylor, Smith, and Cooter (33). Curve 2,
theoretical eurve based on simple Ilkovic equation 39, Curve 3, theoretical curve based on
Matsuda equation 109. Curve 4, theoretical curve based on Markowitz~-Elving equation
115; plane approximation, parabolic initial gradient. Curve 5, theoretical curve based on
Markowitz-Elving equation; spherical approximation, parabolic initial gradient.
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The experimental procedures used in gathering the three sets of data just cited
all involved the use of electronic equipment for measuring the current. However,
the method of recording the current used by Taylor, Smith, and Cooter involved
the use of a rotating drum camera to record the deflection of the beam of a
cathode ray oscillograph. The photographic record was analyzed with what
appears to be great accuracy by means of a special comparator. This entire
technique seems superior to those used by the other authors cited, who photo-
graphed the trace on the face of a cathode ray oscilloscope; methods of analyzing
such photographs were not described.

The actual behavior of the current with tinie is exhibited by curve 1 of figure 1,
which represents the data of Taylor, Smith, and Cooter (Drop No. 1). This is
typical of the behavior encountered by all investigators. The data are plotted
as ¢/t¢ ps. /8, The Ilkovie equation, so plotted, appears as a straight line,
parallel to the /¢ axis. The Matsuda version, equation 109, appears as shown by
curve 3 of figure 1 (the curvature resulting from the third-order term is so
slight as to be indistinguishable). The data appear as an S-shaped curve, which
approaches neither equation except as a limit near the end of the drop life. In
considering such curves, it is well to remember that the diffusion coefficient is
not known very accurately; this means that the actual vertical position of the
theoretical curves is in scme doubt, though this inaccuracy does not affect their
shape.

B. HYPOTHESES ON THE DISCREPANCY BETWEEN EXPERIMENT AND THEORY

Two suggestions have been advanced to account for the wide discrepancy be-
tween the experimental results and the theoretical prediction. Lingane (18)
relates the discrepancy to the variation in mercury flow rate during the drop life-
time, while Markowitz and Elving (23, 24), following a suggestion of Airey and
Smales (3), have mathematically developed the idea that the freshly forming
drop begins its life in a region partially depleted by the electrolysis at the pre-
ceding drop.

Lingane (18) suggests that the low value of the current early in the drop life
may be accounted for by the neglect in the theoretical analysis of the time
dependence of m, the rate of flow of mercury. The current is directly proportional
to the drop area, which is taken to be directly proportional to m*?. Thus, were
the initial value of m lower than the assumed average value, the drop area, and
consequently the current, would be smaller than theory predicts at small values
of .

To evaluate this suggestion, it is necessary to have some idea of the time
dependence of m. A discussion of this is found in the monograph by Kolthoff and
Lingane (16) (where, incidentally, the authors state that the observed discrep-
ancy between observed and theoretical current is too large to be accounted for
by the variability of m). When the Poiseuille equation, which relates the volume
of a liquid flowing through a capillary to the capillary dimensions, the viscosity
of the liquid, n, the differential head, AP, and the time, is combined with the
definition of m, there results
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b4 ‘14
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where r., L, and d are, respectively, the radius and length of the capillary and
the density of mercury. This equation is strictly true only for liquids which wet
glass, unlike mercury, for circumstances under which the kinetic energy of the
discharged liquid is negligible, and for steady state conditions, i.e., constant
AP. The dropping electrode would seem to meet none of these requirements for
small ¢.

Kolthoff and Lingane cite Kucera (17) to show that, for a pendant drop at
the tip of a small capillary, the back pressure, which diminishes the nominal
hydrostatic head, can be expressed as

Poack = 22 (112)
Td

where ¢ is the interfacial tension at the drop surface in dynes per centimeter and
rq is the radius of the drop. Combining equation 111 and equation 112:

rrad 20
"= (%) (1)

Since m, according to equation 113, depends on the drop radius, while, from
equation 16, the drop radius depends on m, it is seen that m is given only im-
plicitly by equation 113. Combining equations 16 and 113 leads to a complicated
equation in fractional powers of m, intractable to formal methods of solution.
Trial calculation might be made for m for specific values of the time, but the
results would not be general. Furthermore, the general validity of equation 113
has not been established, either experimentally or theoretically, for the dynamic
case under consideration.

First of all, the citation of the paper by Kucera and the absence of any further
references to substantiate equation 112 is rather strange, since this equation has
such a central place in Lingane’s interpretation. Kucera’s paper deals mainly
with the effect of polarization on the interfacial tension of water and mercury.
In the few paragraphs devoted to a discussion of the back pressure, equation 112
is introduced, but no justification is given. No mention of any treatment of the
rate of growth of mercury drops is to be found in several authoritative treatises
and compendia dealing with capillarity and other surface effects (1, 5, 6). Bouasse
(6) and Bikerman (5) both characterize the usual methods of the determination
of surface tension, to certain of which the dropping electrode has similarities,
as static rather than dynamic methods. Bouasse indicates that mathematical
difficulties would be anticipated in any treatment of drops which are falling
(tombante) as opposed to those which are static (pendant). It appears that in
any complete treatment, some account would have to be taken of the contact
angle in the system mercury-water—glass (4), at least for the very early stages
of drop formation. The contact angle would vary from case to case, depending
on the nature of the solution and the kind of glass of which the capillary tube is
made. Other factors, such as the adsorption on the drop surface of surface-active
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material from the solution, would generally operate to diminish ¢. Equation 112
cannot be regarded as more than an approximation. Nevertheless, the proba-
bility is good that m is time-dependent, and that its time dependence is super-
ficially described in parametric form by equations 16 and 113.

Lingane’s suggestion that this time dependence is responsible for the current—
time behavior of his data cannot, however, be accepted as the complete explana-
tion. For one thing, such a suggestion is inadequate to explain Lingane’s own
data. In one case, under conditions almost identical to those governing the data
of figure 1, a caleulation shows that the ratio of the m-value expected from equa-
tion 112 at the beginning of drop formation to that at the end of the drop life is
about 0.6. m occurs to the two-thirds power in the Ilkovie equation; thus, were
a time-dependent m introduced, the current—time curve for this equation,
corresponding to curve 2 in figure 1, should start somewhat lower and end some-
what higher than curve 2, the ratio of initial to final current being 0.62/* or 0.7.
(It will be recalled that the time-average value of m is ordinarily used in the
Ilkovie equation.) The situation is similar for the modified version of the Ilkovic
equation, where the slope, as well as the ordinates, should be somewhat lower
at small values of time than at large. It can be seen from figure 1 that such
differences could not nearly account for the discrepancies between theory and
experiment.

It must be admitted, as Lingane points out, that were a time-dependent m
introduced into the differential equation at the outset of the analysis, the theo-
retical outcome would be different and the current derived might have an entirely
different form. On the other hand, it is certain that the initial value of the drop
ares is finite, and for a short period of time, as mercury begins to emerge from
the capillary without much change in nominal radius, the area ought to be rela-
tively constant. The “mathematical” drop, however, as used in the derivations,
starts from zero area. It follows that, for a short period of time, the physical
drop is larger than the corresponding mathematical drop, so that, initially, the
true current should actually be greater than the mathematically derived current,
rather than the reverse. In fact, if the time dependence of the m-value were the
only effect causing the discrepancy between theory and experiment, and the
finite initial drop area were taken into consideration, the initial current ought
to be infinite, as shown, for instance, by equation 108:

i = AnFDC, (l + §) (108)
7o 6
Since ¢ has /2 as a factor, 3/ increases without bound as ¢ goes to zero.

It appears from these considerations that the question of the exact influence
of a time-dependent m on the theoretical situation must remain open for the
present. However, it also seems unlikely that such a hypothesis can completely
account for the disparity between theory and experiment, although the time de-
pendence of m should certainly be taken into account in any complete theory.
The neglect of this factor in the past is probably due to the mathematical compli-
cations which would be consequent to its inclusion. Since, as this review shows,
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these difficulties are very severe even without a time-dependent m, neglect of
the time dependence of m on these grounds is understandable.

Airey and Smales (3) have suggested that the freshly forming drop begins its
growth in a region of solution where the concentration is less than that in the
bulk solution as a result of depletion by electrolysis at the immediately pre-
ceding drop. Markowitz and Elving (23, 24) incorporated this postulate into
current—time theory by discarding the usual boundary condition of constant
initial concentration in favor of a new one:

C(r, 0) = CoF(r) (114)

F(r) is an arbitrary initial distribution function having values between 0 and 1,
chosen so as best to represent the assumed physical situation. To avoid mathe-
matical difficulties, the model of Lingane and Loveridge (19), in which the factor
34 is used to account for the effect of drop growth, was adopted. Solutions were
sought for the problems of diffusion to stationary plane and spherical electrodes
with inhomogeneous initial conecentration distributions. By the use of the
Laplace transform calculus, the electrode surface flux was determined in a form
in which the trial functions, F(r), occurred in integrals whose evaluation could
be deferred to the final stages of the calculation.

To describe the initial concentration distribution the most useful form of F(r)
was found to be the quadrant of a parabola, with the value zero at the origin
and with no discontinuity at the depleted region boundary. The time-dependent
codrdinate of this boundary was determined by using the Ilkovie equation 1 as
a first approximation in caleulating the volume of solution necessary to contain
all of the electroactive material consumed during the lifetime of a drop. The
chosen F(r) was introduced into the equation for the flux, and the integrals were
evaluated. Following the procedure of Lingane and Loveridge, the quantity 34
was associated with the product Dt wherever the latter occurred, and the equiva-
lent spherical area was introduced. For the plane electrode model, the final
equation for the current is

Z. — kt1/6 {2 vV 37TDt/7 erf M + 12Dt |:6_7“2/12Dt _ 1}} (115)
u 2~/3Dt/7 Ty

The Ilkovic constant, k, represents the product, 709 nD'2Cm??, and u is the
coordinate of the depleted region boundary; the form of u is complex. It can be
shown that the bracketed factor of equation 115 reduces to 1 when p approaches
zero, corresponding to the classical derivations of the Ilkovic equation with
constant initial concentration. Thus, in the limit of vanishing depleted region,
equation 115 approaches the Ilkovic equation.

The current-time behavior of equation 115 was compared with the experi-
mental data of Taylor, Smith, and Cooter (33). The experimental constants of
these investigators were introduced and the current calculated as a function of
time. The results, plotted in figure 1, show excellent agreement with the experi-
mental curve. Even better agreement can be achieved by the use of the corre-
sponding spherical electrode solution; the latter solution is analogous to those
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of the classical derivations which result in a two-constant equation for the cur-
rent, as, for example, the solution of Lingane and Loveridge. Introduction of an
empirical constant by trial to account for the portion of depleted solution swept
away by the fall of the preceding drop improves the agreement of experimental
and theoretical results for values of the constant which reflect partial attrition
of the depleted region from this cause.

The good agreement of equation 115 and its spherical counterpart with the
experimental results indicates that the introduction of the depleted-region con-
cept is a very satisfactory way of bridging the disparity between theory and
experiment. A thorough discussion of the various assumptions and approxima-
tions made in the mathematical development has been given by Markowitz (23),
who concluded that the validity of the result is not seriously affected by them.

IV. Coxcrusioxs

A detailed and critical study of the theoretical and mathematical contribu-
tions of various authors to the theory of the growth of the current at the dropping
mercury electrode has been carried out, and the results compared with the best
experimental work available. It appears that none of the theoretical equations
can predict the experimental current—time relationship accurately, especially
during the early stages of drop growth.

Two suggestions have been advanced to resolve the discrepancy between theory
and experiment. One suggestion attributes the discrepancy to the negleet in all
of the theoretical analyses of the variation in the rate of flow of mercury during
the drop lifetime. The other suggestion uses the hypothesis that a drop begins
its life in a region of solution partially depleted of electroactive material as a
result of electrolysis at the preceding drop. Mathematical development of the
latter idea results in a theoretical current-time relationship which is substan-
tially in agreement with the experimental data. It appears that the combination
of the two suggestions outlined would result in even better agreement.

The authors would like to thank the U. 8. Atomic Energy Commission, which
helped to support the present study, and Dr. Ruel V. Churchill of the Depart-
ment of Mathematies, University of Michigan, for his advice and review of the
material.
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