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A. PURPOSE 

The Ilkovic equation mas introduced (10) in 1934 to relate the average diflu- 
sioiz-controlled current experienced during polarographic electrolysis a t  the 
dropping mercury electrode to the solution concentration and diffusion co- 
efficient of electroactive molecules, the mass rate of flow of mercury from the 
capillary electrode, and the drop lifetime. A common form of the equation is 
the following: 

i = 607nD1l2C17z2/3i1/G (1) 

where i is the time-average diffusion current in microamperes, D is the diffusion 
coefficient of the electroactive substance in square centimeters per second, 

1 Present address Westinghouse .4tomlc Po-wer Divirion, Bettis Field, Pittsburgh 30, 
Pennsylvania 
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C is its coiicentration in millimoles, m is the mass rate of flow of mercury in 
milligrams per second, t is the drop lifetime in seconds, and n is the number of 
Faradays of electricity required per mole of electrode rwction (hence, the num- 
ber of electrons transferred per active molecule). 

In  a more general version, which gives the value of the instantaneous current 
as n function of the same constants and the time measured from the beginning 
of the formation of a given drop (the maximum instantaneous diffusion current), 
the numerical term, 607, is replaced by 709. 

It hiis been established over the course of years of polarographic experimenta- 
tion that the concentration dependence of the current, as expressed by equation 
1, is satisfactory. In  other respects, however, such as the time dependence of 
the current, the relationships exprcssed by equation 1 or its more general forme 
are inadequate. In  response to these inadequacies, progreqcively deeper and more 
sophisticated theoretical aiinlyhes of the problem have appeared in the litera- 
ture. At the present time, certain of the discrepancies betn-een theory and es- 
perirnent ha.i,e been removed, but the most serious difficulty, the erroneous 
time dependence of the current as expressed by the Ilkovic equation, remains 
At the same time, the mathematical treatment has become increasingly rigorous. 
The conclusion is almost inescapable that the problem has been incorrectly 
stated mathematically and that a postulatory revision is necessary. 

The purpose of the present study is to examine the theory of the current a t  :I 

dropping electrode in the most detailed nay.  

B. THE JI.~THEXlATICAL B-ISIS OF DIFFUSIOS THEORY 

1 .  Electrode processes and diffusioii 
In  any chemical problem which involves reaction at a surface, a complete 

solution requires some consideration of the rate a t  which reactants reach the 
surface and/or the rate a t  which products are withdran-n. This problem is not, 
encountered in homogeneous reactions, where a uniform time-average molecular 
density is found and where no surface is required to  cause reaction to occur. 
However, in heterogeneous reactions involving a surface a t  a fixed position with 
respect to the reactant phase, diffusion gradients are set up, and the mech- 
anism of diffusion becomes important. 

Prominent among surface reactions are those occurring a t  electrodes ixn- 
mersed in solutions. Here, electrons are added to  or removed from a chemical 
species, leaving i t  changed in nature. If this electron transfer is very rapid. 
then the rate of reaction depends upon slower steps in the total process, such ab 
the rate of supply of reactive species to the electrode surface. Therefore, when 
stirring is absent and other chemical reactions in the solution do not interfere, 
the rate of the electrode reaction will be controlled by diffusion only. In elec- 
trode reactions the rate is simply given by the current, since the current repre- 
sents the number of charges, i.e., electrons, transferred per unit time. This 
quantity is related to the flus of matter by I2araday’s laws of electrolysis. By 
analysis of the diffusion problem, the flu.; a t  the electrode surface and therefore 
the current can be determined. The current so determined ih  called the diffus?or/ 
current. 
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2. The equation of continuity 
The flux may be defined as the rate a t  which matter is transported across a 

surface S a t  a point P, per unit area per unit time, and it n-ill be denoted by 
4. The unit of mass to be chosen is the mole, so that the dimensions of flux are 
L-2T-1. 

It will be convenient to define an isoniolar surface. Consider a solution with a 
concentration distribution defined by a scalar function of position and time, C. 
I t  may be supposed that there is a surface passing through this solution, every 
point of which a t  some instant possesses the same value of the concentr a t' ion 
function. This surface of constant concentration may be called an isoniolar 
surface. An infinity of such surfaces may be described and no two may moss 
each other, since this Kould imply the existence of points in the solution having 
more than one value of concentration. Such surfaces separate parts of the solu- 
tion which are more concentrated from parts which are less. 

Consider a closed region in the solution bounded by a surface S ,  not neces- 
sarily isomolar, and having a volume V .  The rate of flow of matter into this 
region, dN/dt, in moles per second, may be represented by taking the surface 
flux, c&, at every point on the surface, multiplying it by the differential area 
at  that  point, and summing these over the entire surface. That is, 

d-N = s, dS 
df 

But every point P of the surface will be crossed by some isomolar surface, for 
which the flux vector? a t  P is &. Therefore, if the unit normal Vector to  S 2t P 
is 8, the scalar 4s in equation 2 can be written as n vector dot product, 

48 = @n.s 

Using this, equation 2 becomes 
(3) 

Equation 4 may be transformed into a volumc integral by itpplying the di- 
vergence theorem of vector analysis: 

Alternatively, the rate of flon. of matter into S may be described by coii- 
Yidering the rate of changc of concentration m-ith time in each differential volume 
and integrating over 1': 

In the absence of any sources or sinks of matter within S, the sum of the ex- 
pressions given by equations 5 and G must vanish. 

//Iv [div & + at (7) 

* Vector quantities are underscored. 
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and therefore, for every Ti, 

a' _ -  - -div I$,, 
at 

Equation 8 is the form of the equation of continuity applicable to diffusion. 

3. Fick's law C L ~  the diffusion cquatiolb 

I n  the present case, the flux can originste through either diffusion or convec- 
tion. The fundamental postulate of the general theory of diffusion states that  
the normal flux a t  a point P on an isomolar surface is proportional to the coii- 
centration gradient a t  P ,  i.e., 

& = - D g r a d C  = - D - n  
an - 

Equation 9 is a statement of Fick's law in vector form. I) is the diffusion co- 
efficient Kith units of square centimeters per second, a /an  represents differenti- 
ation along a normal to the ironiolar surface, and Q is the corresponding unit 
normal vector. 

If, in addition to the diffusion flux, the solution as a whole is subject to coil- 
vective forces, there will be translation of points on the isoniolar surface itself 
with vector velocity g. This motion will be responsible for a flux of magnitude 
1;C, having the same direction as that  of the velocity. 

Therefore, in the general case the total flux will he given by the expressioii 

(9) 
ac 

- 

& = - D  grad C + 1;C (10) 

By introducing this expression for the flux into equation 8, a general equation 
for diffusion and convection is found: 

Equation 11 as it stands is quite general and could serve, for example, to 
describe the motion of moisture through an inhomogeneous, stratified solid. 
A liquid, however, is obviously homogeneous and isotropic. This means that for 
the present case the diffusion coefficient, D ,  is independent of the coordinates. 
Accordingly, equation 11 may be written 

= DV'C - V - u C  (12) at 

Equation 12 \vas first given, without derivation, by hIacGillavry and Rideal (21). 
Since no coordinate system has thus far been assumed, the Laplacian operator, 

c2, can be immediately written down in terms of whatever co6rdinates seem 
appropriate to a given problem. The form of the divergence term mill depend 
partly upon the nature of the convection velocity, 1;. For cases in which g is 
zero, that  is, for pure diffusion, the diffusion equation takes the following forms 
in rectangular and symmetrical spherical regions, respectively: 
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Only one case for which u is not zero will be considered in this work, the case of 
the symmetrical spherical region. Equation 12 here becomes 

The assumption is made, in finding solutions for equation 12, that the diffu- 
sion coefficient, D,  is independent of concentration. This assumption is neces- 
sary to keep equation 12 \tithin the class of linear differential equations. The 
alternative would involve mathematics of a much higher order of difficulty. 
It appears that  the discrepancies resulting from this assumption are not too 
serious provided D is properly chosen. 

4. T h e  boundnry value problem f o r  electrodes 
111 attacking a given diffusion problem, solutions of equation 12 which satisfy 

some specified conditions for given values of the independent variables will be 
sought. These conditions are the boundary conditions, and the problem thus 
constructed is a boundary value problem. Theoretically, the number and char- 
acter of the boundary conditions required would depend on the nature of the 
differential equation. Actually, a good deal depends on the specification of the 
physical problem, since, as will be seen, it is difficult to transcribe a physical 
situation into mathematical terms. In  each of the problems to be attacked in 
this work i t  will be found that, with one exception, a total of three boundary 
conditions will be sufficient to produce a physically reasonable solution. Such 
solutions will be purely formal in that, although they will satisfy the differential 
equation and the boundary conditions, no attempt will be made to show that they 
are unique or to define the further conditions under which they mill be unique. 
This mathematical shortcoming should offer no difficulty, since the ultirtiate 
criterion for any solution will be comparison with experimental results. 

Thus, the mathematical program required to determine the formula for the 
current is the construction of a boundary value problem, follon-ed by its solu- 
tion. This solution r i l l  be a formula expressing the instantaneous concentration 
at any point in the investigated region. The flus may now be found through the 
use of equation 9. The flux is then evaluated a t  the particular value of the space 
coordinates which correspond to the electrode surface. The current is the product 
of the flux a t  the electrode surface, its area, and the Faraday constant 

C. T H E  DEOPPISG MERCURY ELECTRODE 

1. Physical  description 
The dropping mercury electrode is exceedingly simple in construction. A short 

( 5  to 10 cm.) length of capillary tubing with a bore of the order of 0.05 nim. is 
connected, perhaps by rubber tubing, to a mercury reservoir whose height is 
adjustable. The tip of the capillary is inszrted beneath the surface of the solution 
to be electrolyzed. The height of the wservoir is adjusted to  qoine position from 
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25 to 7 5  cm. higher than the capillary tip. L-nder these circumstances, mercury 
falls dropwise from the capillary tip into the solution, the drop lifetime being of 
the order of 4 see. A current lead is inserted into the mercury. The rest of the 
electrical circuit is not essential to this discussion; i t  consists of a reference 
electrode, also in contact m*ith the solution, a potentiometer bridge for applying 
a controlled potential across the electrode system, and voltage- and current- 
measuring devices. 

Thus, current vi11 flon while tl given drop is pendant and cease as the drop 
falls, only to grow once again during the formation and growth of the follon-ing 
drop. It is the detailed analysis of the time dependence of the current during 
the life of a single drop nhich is of concern here. 

2.  Idealizing assumptions 
The following idealizing ahsuniptions are usually made for purposes of mathc- 

matical analysis : 
( 1 )  The potential of the electrode, i.e., the potential impressed on the elec- 

trode by the bridge circuit, less the cell iR drop, is considered to be set a t  a 
large enough value so that electrolysis of the electroactive material in solutiori 
is occurring measurably; for simplicity, it  is usually assumed that the potential 
is large enough to deplete completely the layer of solution next to the electrode 
surface. Under these circumstances, the limiting diffusion current would be 
measured. In any case, the potential is considered to be increasing at a slo~v 
enough rate so that the potential is essentially constant during the drop lifetime. 
(9) The mercury drop is spherical throughout its lifetime; changes in shape 

a t  the beginning of drop formation or a t  the time when the drop begins to sepa- 
rate and fall are to be ignored. High-speed photographs of drop growth (22) 
have shown this assumption to be essentially correct. 

( 3 )  The drop is isolated; no consideration is to be given to the asymmetry of 
the diffusion region because of the presence of the capillary tube tip above the 
drop. 

( 4 )  The volume rate of drop growth is t o  be considered constant. This asmmp- 
tion is not accurate and n-ill be given more detailed consideration later. In a11 
the analysis to be considered, however, the mass rate of flow of mercury is dp- 
fined as the average of the true instantaneous mass rate over the drop lifetime, 
a quantity which can be measured experimentally. Denoting this quantity by m,  
it  is easily seen that the radius of the mercury drop at any instant is given by the 
expression 

31nt ro = - 
47rd 

nhere d is the density of mercury (13.6 g. jcrn.7 and t is the time. The constant 
quantity 3nz/4ad will be denoted by the symbol y .  

(5) The drop is motionleqs with respect to the solution except for growth. 
Actually, the center of gravity of the pendant drop must move downward vith 
time. This does not appear to have any serious conwqueiices to the analy,qis. 

(6) The solution in which electrolysis is occurring is considered a body of 
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indefinite extent, with a constant bulk concentration, Co. At any time, therefore, 
the concentration around the electrode must approach the value Co for suffi- 
ciently large values of the space variable. This condition is sonien-hat loose, and 
( u i  be made more stringent, as will be seen later. 

( 7 )  The diffwion a t  a single drop is independent of the history of other drops. 
That is, the initial concentration distribution as the drop begins to form is con- 
stant in space and equal to Co. This implies that  the relaxation time of the 
inhomogeneous concentration distribution around the electrode tip caused by a 
given drop is small compared with the interval between the falling off of one 
drop and the beginning of the formation of the next. This assumption is coni- 
mon to d l  the literature on this subject; it  is, however, the least realistic of all, 
and its replacement by a more conr-iiicing initial condition is the basis for a 
recent attack on the problem (23, 23) .  

In addition to the assumptions listed, a host of important but self-evident 
conditions must be tacitly accepted: freedom from stirring motion in the solu- 
t ion, adsorption phenomena a t  the electrode surface, etc. 

11. ~ ~ A T H E X 4 T I C A L  EVALUATIOX OF PROPOSED THEORIES 
A. INTRODUCTIOS 

In the follonkg section the mathematical formulations and solutions of the 
problem of the current a t  a dropping mercury electrode proposed by a number 
of authors will be given a detailed examination. Any physical or mathematical 
errors in their respective procedures apparent to the present or other past 
:iuthors will be pointed out and, where the situatioii u-arrants, derivations will 
be carried through in corrected form, to determine the mathematical conbe- 
quences of inappropriate or erroneous bteps in the formu1at)ions or solutions. 111 
all cases, home attempt 11-ill be made t o  evaluate the contributions of each author 
to the general progress in understanding the current-time relation. 

The solutions to be considered fall into several groups. Ilkovic (12), Mac- 
Gillavry and Rideal (21), Strehlow and von Stackelberg (32), and Kambara 
and Tachi (15) all used the “differential” approach, consisting of the solution 
of the diffusion equation with appropriate boundary conditions. Ilkovic ( lo) ,  
von Stackelberg (30), and Matsuda ( 2 5 )  used an “integral” approach, in which 
the problem is formulated in the form of an integral equation. Finally, the solu- 
tion of Lingaiie and Loveridge (19) makes use of an ingenious modification of 
the original solution of Ilkovic to improve the current equation. 

B. THE SOLI-TIOS OF ILKOVIC 

The earliest solution of the diffusion problem for the dropping electrode was 
given by Ilkovic (12), and the resulting equation bears his name. In  construction 
of the boundary value problem, he makes no use of the general diffusion-con- 
vection equation (equation 12). Instead, he writes the total differential for C 
as a function of 5 and t ,  where x is the distance from the drop surface to  n point 
in the solution : 
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Representing by v the velocity of motion of the solution relative to  the drop 
surface, i.e., dx = -v dt, the total differential expression may be put into the 
form: 

The ordinary derivative on the left Ilkovic regards as the change of concentra- 
tion with time a t  a point which moves with the solution. He reasons that the 
value of this derivative is unaffected by convection, so that this term can be set 

d2C equal to D - aft,er equation 13. Thus, 
ax2 

The partial derivative on the left corresponds to the concentration a t  a point 
fixed with respect to  the electrode surface. 

This formulation, which appears to be a linear approximation to the three- 
dimensional situation, is inconsistent with the results of the rigorous develop- 
ment given in the previous section. To see the extent of the approximation in- 
volved, equation 19 may be compared with the rigorous equation, equation 15. 
To do this, i t  is first necessary to perform a transformation of independent 
variable in the latter, according to the following equations of transformation, 
in which r is the variable radius and ro is the drop radius a t  time t : 

x = r - r o  (20) 

T = t  (21) 

The identity transformation, equation 21, is included for generality; 7 is an 
artificial symbol introduced for manipulative convenience and is replaced by t 
a t  the end. When the respective derivatives are evaluated and i n t r ~ d u c e d , ~  
the form of equation 15 appropriate for comparison is: 

'There are essentially two differences between this equation and equation 19. 
In the latter there is no term of the form 

2 0  dC 
x ax 

which means, qualitatively, that the effect of the curvature of the spherical 
region on the diffusion is being ignored. 

Secondly, the relationship of the respective terms on the right of each equation 

3 Derivations and discussion of items indicated by footnote reference 3 will be found in 

-- 

the appendix t o  reference 23, pages 220-52. 
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which have to do with convection depend oil the choice made for 1' on the one 
hand and ti on the other. It is evident from equation 16 that 

Further, because the liquid solution is effectively incompressible, each point 
in it has a velocity with the same proportionality to the inverse of the radial 
distance squared, i.e., a t  any point, 

With the introduction of these values for the radial convection velocities iiito 
equations 19 and 22,  the convection terms in the respective equations become 
identical: 

Thus the discrepancy between Ilkovic's differential equation and the rigorous 
one lies only in the omission of the curvature term. 

However, either because the equation in this form was too difficult t o  solve 
or because he did not perceive the relevance of equation 21, Ilkovic used 3 
different method of expressing u in terms of z and t .  By restricting the range of 
z so that a t  all times its product with the surface area of the drop is a constant, 
he is led directly to an expression for 2' in terms of the drop surface area. For, 
if A x  = constant, then 

(26)  

From equationl6, thesurfaceareaof the drop is 1r(yf)? ?. Thus dA/dt is S T Y ? ' ~ / ~ P ~ ~  
and v is 2 ~ : / 3 t .  Upon introduction of L! into equation 19, 

If substitution is made for u in equation 22, such that u = 22/3 t ,  the convection 
term assumes a much different form from that in equation 27. It can be concluded 
that,  whereas in equation 19 only the drop curvature is neglected, equation 27, 
that  actually solved by Ilkovic, also expresses the convection effect imperfectly. 

These considerations apart, Ilkovic's expression for u is most restrictive. 
Consider the annular volume between a sphere of radius T O  and a concentric 
sphere of radius T O  + z. The volume, I,',, will be given by 

4 
3 

a - - -  7 r [ ( r o  + : c y  - cas) 

I i ! Y )  4 
3 

= -?r2(3ri + 3rox + z') 



Thus, for x very ~ninll compared with ro, 
v, = 4nr:c = A x  = 4x(yt)2’3 (30) 

Therefore equation 27 will hold only for values of x so chosen that the annular 
volume remains constant in time. Once V, is chosen, therefore, x becomes a 
specified function of the time. This would lead to difficulties in satisfying the 
boundary conditions at  x = 0 and a t  t = 0, which can be avoided only by making 
V,, the independent variable. 

Ilkovic, in taking account of this situation, does not explain himself very well, 
so that  a certain amount of misunderstanding exists in the literature on the 
subject (15). He gives the impression that equation 27 is the final equation and 
that subsequent alterations are part of the solution. Actually, the next step is 
essential in formulating the boundary value problem. A variable u (unrelated 
to the symbol u used in the present text) is introduced, having the value & I 3 .  

Since this quantity has the form of the annular volume as given by equation 30, 
this substitution represents the change of independent variable suggested in the 
preceding paragraph. The new equation is 

The boundary conditions are 
C(Z/, 0) = co 
C(0, 1 )  = 0 

(32) 
(33 )  

This formulation neatly sidesteps the difficulty raised by the nature of the con- 
vection term introduced earlier. Both conditions are obviously physically sound. 

Ilkovic’s solution of this problem is available in detail (12) and will not he 
pursued further here, except to state that it makes use of a variation of the Four- 
ier integral theorem in forming a linear combination of particular integrals and 
satisfies the boundary conditions in an ingenious f:ishion. Ilkovic presents the 
solution 

but points out that  it is unnecessary to perform the integration, since the flux 
a t  the drop surface is the quantity desired. Differentiation of equation 34 with 
respect to x and evaluation of the result a t  x = 0 yields 

co 
= 2/%m (35) 

If the scalar flux from equation 9 is written out, i t  is immediately seen that the 
flux a t  the electrode surface, that  is, the origin of x, is given by 

90 = --D (36) 

Further, the total amount of material reaching the electrode surface per unit time 
must be given by the product of the flus and the electrode area. The unit of 
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mass here is the mole; consequently, the current mill be the product of the nuin- 
lm of nioles reaching the electrode surface per unit time and the number of 
coulombs per mole. The latter is siiiiply 7iF, where n is the number of ecjuir-alent5 
per mole and F ic Faraday's constaiil (96,500 coulomb.: per equivalent). Thus 
the current is 

i = 7 2 ~ ~ ~ ) .  (?+r~t)-1'" D ( 3 7 )  

By introducing the value 01 ro from equation 16 and lumping the iiunierical 
constants, it iq fouiid that 

i = 0.$32?#C'o?l$ Jnl 221'6 ( 3 8 )  

In  this equation. concentration is in units of nioles per cubic centimeter and the 
mass flow- rate of mercury, m, is in grains per second, giving the current in 
amperes. In order to have the equation in more convenient laboratory uiiits, 
the concentration should be expressed in Iiiilliinoles per liter, w in milligrams 
per second, and the current in microamperes. When the iiececsary dimeiisioiial 
constants are introduced and the value of F included, equation 38 becomes 

i = ~09nC'oDl'?m?13t116 (39) 

This cquation gives the instantaneous d u e  of the current, which evidently has 
the form of a sixth-order parabola in the time. It iq  sometimes convenient to 
know the time-average current, which can be found by integrating equation 39 
over the time and dividing by the drop lifetime, r :  

Equations 1 and 39 are the best-knon-ii forms of the Ilkovic equation. As has 
been stated earlier, the time dependence predicted by equation 39 is not esperi- 
mentnlly correct. 

C .  THE SOLUTIO\ OF  .M.4CGILLA4VRT AYI> 1 t I I ) E ~ L  

Though Ilkovic gave the first solution for the problem of thc dropping mercury 
electrode, the best-known treatment n-as given by AIacGillavry 2nd Rideal (21). 
Their analysis is reproduced with some simplification in the mobt widely used 
nioilograph on polarography ( l G ) ,  and the treatment has been characterized as 
"rather rigorous" in a recent monograph on electrochemicnl methods 19). I t  is 
generally felt that the shortcomings in the result are caused by excecsive ideali- 
zatioii rather than by niatheniatical defects. It will be shown that this is not 
the cape. 

1LacGillavry and Rideal begin the formulation of the boundary value prob- 
lem with equation 15 for diffusion and convection in a symmetrical spherical 
region. When the coin-ection 1-elocity, 21, given 11s eqiiation 24, i. introduced 
into the convcction term, equntion 13 becoiwi 
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A new coordinate system is introduced a t  this point, the equations of trans- 
formation being 

(41) 
7 = t  (42) 

3 3 3 3  
p = r  - r o = r  - y t  

The new independent variable, p ,  can be visualized as the radius of a hypothetical 
sphere whose volume is equal to that enclosed between concentric spheres of 
radii ro and r. The transformed equation3 is 

This transformation may be verified by beginning with equation 12 and intro- 
ducing p as an independent variable a t  the beginning, observing that in the 
( p ,  t )  system the radial velocity, g ,  is zero. This vanishing of the convection term 
is the chief value of the change. 

The next step is critical. The authors seek to put equation 43 into a more 
readily integrable form. They reason that, since the region of interest is that  
volume of solution which is very close to the drop, the quantity p3 can be as- 
sumed to be very small in comparison with y t ,  the drop radius. Thus, equation 43 
can be simplified to 

This assumption has been correctly criticized (32) on the ground that the 
thickness of the diffusion layer is much larger than this estimate acknowledges. 
A related defect lies in the ambiguous nature of the functional dependence ex- 
pressed by equation 44. It is clear that the transformation which carried equa- 
tion 40 into equation 43 is perfectly appropriate. C becomes a function of two 
variables, p and t ,  the former of which is exactly specified for any given values 
of r and t .  With the simplification leading to equation 44, quite a difference ob- 
tains. C is now a function of two variables, p and t ,  the former of which is confined 
to a certain region depending on t ;  t becomes the only really independent varia- 
ble. This results from the specification that p3 << yt.  Thus, if equation 44 is to 
be treated formally as a partial differential equation, the special character of the 
independent variables must be kept in mind. 

A further change of independent variable is made at  this point, given by 
3 

x = p  (45) 
y z t 7 '3  (46) 

With these changes, arid the introduction of a constant, 

the differential equation becomes 
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The boundary conditions are formulated from the requirements that  the con- 
centration be uniform and equal to a constant, Co, throughout the solution a t  
the start, and that it vanish a t  the electrode surface afterwards. Thus, in terms 
of r and t ,  p and t ,  and x and y, respectively, 

C(r,  0 )  = co (49) 

C(0, t )  = 0 (50) 

C(P, 0) = C” (51) 
C(0, 1) = 0 

C ( x ,  0 )  = C” 
( 5 2 )  

( 5 3 )  

C(0, Y) = 0 (54 
These are the only conditions explicitly stated by RIacGillavry and Rideal. 
Equation 48 and conditions 53 and 54 thus constitute the boundary value 
problem to be solved. As shown later, the problem thus stated is incomplete. 

No procedure for the solution of this problem is given by MacGillavry and 
Rideal. They simply introduce, as “the customary solution of interest in dif- 
fusion problems,” the following expression involving the error function, sym- 
bolized erf :$ 

(55)  

MacGillavry and Rideal introduce bouiidary conditions 53 and 54; after trans- 
formation to the ( p ,  t )  coordinate system, the expression for the concentration is 

It is not necessary to iiitroduce the reciprocal of transformations 41 and 42, 
since i t  is only the flux that is desired. Differentiation of equation 56 Jvith respect 
to p and the subsequent mechanical operations necessary to  find the current are 
presented in the origind p‘iper. The resulting expressions for the instantaneous 
arid average current are identical with those derived by Ilkovic, equations I and 
39; however, the coilcentration function obtained as a solution of this problem 
(equation 58) is not identic21 with that of Ilko.r-ic, equation 34. 

The following consideration will show that equation 5G is an erroneous solu- 
tion under the ronditions imposed 011 the problem. A solution for equation 48 
i? sought. Let the operational method be fornially applied to equation 48. In  
the not::.tion of Churchill (8), let 

L { C(.L., g ) )  = F(2, 8) 

“ilieti thc T,,iplnce transform of equation 48, uqing condition 53,  is 
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This ordinary differential equation is to be solved, subject to the transform of 
the remaining boundary condition (equation 51) : 

q o ,  s) = 0 (5s) 

The solution of the homogeneous part of equation 57 is 

where h.1 and X.2 are arbitrary constants. In  addition, equation 5'7 has a particular 
integral, Co/s. The general solution is therefore 

Since there are txyo arbitrary constants in equation GO, two boundary conditionh 
are required for their evaluation. It will be recalled that MacGillavry and Rideal 
provided only two. Of these, one has been used in equation 57;  consequently. 
only one is still available for use ivith equation 60. For RIacGillavry and Rideal 
to have achieved solution in the form of equation 55, one other boundary condi- 
tion was needed ; by investigating the effect of 1-arious boundary conditions on 
the form of the solution, the nature of the unstated, but essential, missing condi- 
tion can be determined. Let it be assumed that this coiidition is n restriction 011 

C as 2 approaches some boundary point other than zero. Immediately, a difi- 
culty arises. lClacGillavry and Ridenl have specified in their simplification of 
equation 43 to equation 44 that p is to remain small in comparison with rt, i.e., 
the equations are applicable only to a region close to the drop surface. Let this 
important restriction be ignored, however, and allow the introduction of the 
following (improper) boundary condition : 

C" lim ~ ( s ,  s) = -- 
2-13 .s 

Equation GJ is the transform of 
liin C(s, t )  = Co 
z-m 

which would itself be derived from a condition of the same form in terms of the 
original variables, 1" and t .  This condition is accurate, physically, but, as ha.; 
been shown, its use is mathematically erroneous. 

Inspection of equation 60 Fhom that condition 61 requires k2 to be zero; 
otherwise, the second term on the right n-ould increase without bound as R: 

passed to the limit. The remaining arbitrary constant, 1;1, is evaluated using 
condition 58. The solution of the transformed boundary mlue problem follon-s : 

S S 

The inverse transform of equatioii 63, when appropriately rearranged and the p 
co8rdinate reintroduced through equations 45 niid $5, is identically the recult 
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of MacGillavry and Rideal (equation 56) .  Thus it has been shown that the in- 
clusion of a mathematically inconsistent and therefore proscribed boundary 
condition (condition 61) is essential in order to achieve the solution precented 
by these authors. Consequently, equation 56 is an erroneous solution of the 
boundary value problem as stated. 

It is of some interest to find the solution to the problem of MacGillavry and 
Iiideal subject to conditions which actually do reflect the restrictions implicit 
in their differential equation. Let 6 be a constant equal to the maximum per- 
missible value of p3, and therefore the masimum permissible value of z under 
the condition that p3 >> yt.  Then, if it were true, as hlacGillavry and Rideal 
believe, that outside of the region limited by 6 the coilcentration is undfected 
by  the electrolysis, a solution of the diffuqion problem would have to satisfy the 
espression : 

liin C(s, y) = C o  (64) 

The solution for the bouiidary value problem consisting of MacCillavry and 
Rideal's simplified equntion (equation 4S), together with the appropriate hound- 
nry conditions 53,  54, arid 6-2, is3: 

2-6 

The series in equation 63 is rapidly convergent for small y, which is the case 
here. This solution satisfies the differential equation as well as the boundary con- 
ditions. As 6 becomes larger, convergence is more and more rapid, until, as 
6 --+ 5 3 ,  the solution retains only the firht term of the series: 

This rapid convergence is a conseqiiencc of the fact that erf a = 1. Kote that 
equation 66 is identically the concentration function of hlacGillavry and Itideal 
(equation Tis). 

The current corresponding to  the concentration distribution of equation 65 
can bc calculated by a procedure exactly analogous to the one given in the dis- 
cussion of Ilkovic's work. The result3 is 

m 

The units are those which are conventional in experimental xork,  as presented 
earlier. 

The first term of equation 67 is identical with the equation derived by Ilkovic 
tind by MacGillavry and Rideal. If the value of a:? is very large, e.g., 10, the 
terms in the summation would be negligible. On the other hand, if the exponent 
is m u l l ,  the series terms n-ould be large and the series would converge slowly. 
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To decide this point, it is necessary to  have some estimate of the size of 6. This 
quantity has the dimensions of a volume; it can be interpreted as the annular 
shell about the drop within which, a t  any instant, the concentration is differelit 
from (and less than) that in the bulk of the solution. 

It will be recalled that Mar Gillavry and Rideal assumed that the quantity 
p3 is much smaller than yt ,  the drop volume, i.c., that? 

Kow a trial substitution will reveal that if the quotient p3/yt  remains less than 
0.01, this approximation will not be in error by more than 2 per cent. 6 represents 
the maximum possible value of p3; consequently, the value 0.01 y2 can be RS- 

signed to 6. It is true that this assignmelit is arbitrary and tells nothing about 
the possible functional nature of 6. However, for an order-of-mngnitude compu- 
tation, it is perfectly satisfactory. 

Introduction of the value 0.01 y t  for 6 leads to the following expression for 
a 2 .  

(70) 
Now even the slowest moving of solutes have diffusion coefficients larger than 

cm?/sec. Thus for a moderate value of the time, e.g., 3 sec., and a usual 
value of m,  e.g., 1-2 mg./sec., it is evident that the order of magnitude of a? 
is at most (a is, of course, dimensionless). Therefore, the exponent is small, 
the series of equation 67 converges slo~vly (the terms decreasing from l), and 
the series factor must have an appreciable niagnitude. 

Fortunately, a more rapidly converging series may be utilized to  compute i 
by taking advant,age of the following identity ( 2 )  : 

a2 = 3.10 X 1 0 - 1 0 ~ 2 / 3 t - l / 3 ~ - 1  

Using this to evaluate the second factor of equation 67, the current 

where a2 has the value given in equation 70. 
or smaller, as estimated, the exponential 

terms of equation 72 vanish, and the second factor is well approximated by 
d G / a .  The magnitude of this factor varies from about, 500 for the faster moving 
ions a t  relatively large values of the time (10-5 cm.2/sec., 10 sec.) to  about 10 
for experimental values a t  the other extreme (lo-' cm.2/sec., 0.01 sec.). The 
Ilkovic equation effectively represents the experimental current to a first ap- 
proximation; consequently equation 72,  which is the Ilkovic equation multiplied 
by the factor under consideration, must be grossly in error. It follows that the 
assumption made by MacGiIlavry and Rideal about the thickiiess of the diffu- 
sion layer is completely invalid. 

With a value of a2 of the order of 
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D. THE SOLUTIOK OF STREEILOW AND VON STACKELBERG 

The fact that the current calculated from equation 72 is too high by orders 
of magnitude indicates that the estimate of the size of the diffusion layer (ie. ,  
6 = 0.01 y t )  is too small. A small diffusion layer iniplies a steep gradient and 
therefore n high current. This discrepancy cannot be corrected merely by intm- 
ducing a larger estimate of 6 into a; this estimate is an integral part of 
MacGillavry and Rideal's forinulation of the problem. No change in the estimate 
can be made without, deriving a new solution in which the form of the concefi- 
tration function might be completely different. 

Such a second-order solution is available. It was first given by Strehlow and 
von Stackelberg (32 ) ,  and, while it is far from rigorous, it represents a better 
approximation than that of Rideal and MacGillavry. It suffers from the same 
inconsistency as the analysis of the latter revealed, hovever, and the same kind 
of revision of the solution is necessary. 

Strehlow and von Stackelberg begin with equation 43, as derived by 
MacGillavry and Rideal, but feel that  it is unrealistic to suppose, as do the latter 
aut,hors, that p 3  is negligible compared with y t .  They point out that  such an 
assumption represents the expansion of ( p 3  + yt)-112 and ( p 3  - yt )4 /3  in Taylor's 
series, only the first term being retained. Thus 

n- ( p 3  + yt)4'3 = D(yt)4i3p-5 [ 1 + __ 4p3 + - (p")' - + . . .] (74) P5 3yt 9 yt 

Strehlow and von Stackelberg proceed with their analysis by rebining the first, 
two terms of these expansions. Thus, they are required to solve: 

The balance of the analysis closely parallels that  of MacGillavry and Rideal, 
so that the boundary conditions used by Strehlow and von Stackelberg do not 
take account of the severe restriction of the region of applicability of equation 75 
caused by the approximation made. In addition, certain quantities arising during 
the analysis, which are actually time-dependent, are dealt with by making use 
of their constant time-average values; this ordinarily dubious procedure need 
cause no concern in view of the more general difficulties encountered. 

The current expression ultimately derived by their procedure is 

i 709nCoDl/2~~2/3t1/6((1 + ADliZm--1/3 t i  1 6 1 (76) 
This expression is derived from a concentration distribution function which must 
be considered erroneous. A detailed solution3 which takes into account the limited 
range of the differential equation shows that the current is given by 
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where /? is defined by 

(1 + $fie> = P V  + % e )  (78) 10162~--4/3t-7/3D-l 

and where e, a constant introduced by Strehlow and von Stackelberg, is defined 
as the time average of p3/y t .  

Because of the assumptions made in formulating equation 75, equation 77 will 
hold only to the extent that  

3 -= P - y t ,  - (1 - 2;) 
P3 + y t  

(79) 

is satisfied. By trial, if the value of p3 is no greater than 0.1 y t ,  equation 79 mill 
be in error by no more than 2 per cent. Introducing p3 = 0.1 y t  into equation 77, 
the exponential terms become, for reasonable values of the experimental quanti- 
ties, vanishingly small, and the bracketted factor takes on values ranging from 
50 for fast moving ions and relatively large values of t (10 sec.) down to about 
1 for slow moving ions and very small (0.01 sec.) values of the time. Again, the 
conclusion must be drawn that the size of the diffusion layer has been con- 
siderably underestimated. 

E. THE SOLUTION OF KAMBARA A S D  TBCHI 

Kambara and Tachi (15) have presented a solution which resembles that of 
Strehlow and von Stackelberg, but i t  need not be considered in very great detail 
because of an error they make in deriving their differential equation. Briefly, 
they introduce a new dependent variable, 

cp = rC = P(T ,  t )  (80) 

and transform to the independent variables used by Ilkovic, r ,  the distance from 
the drop surface, and t .  They write the total differential of cp as: 

They then convert the diffusion equation for a stationary spherical surface into 
the same system of variables, finding 

Proceeding much as Ilkovic did, and with the same reasoning, Kambara and 
Tachi introduce equation 82 into equation 81. Their resulting differential equa- 
tion is 

which is erroneous. Direct transformation of equation 40 shows3 that the correct 
result is : 
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I t  is sufficient to observe of their subsequent procedure that they, iikc 
bIacGillavry and Rideal, and Strehlow and von Stackelberg before them, arc 
forced to restrict the range of their differential equation by an approximatioii 
which is essential to the achievement of a qiniple solution. Later, in evnlualiiig 
boundary conditionq, the restriction is ignored. Consequently, their result ~voulcl 
have been questionable in any case. 

F. vos  STACKELBERG’S INTEGRAL METHOD 

It appears that in all four analyses of the diffusion problem which have beeii 
discussed, the concept of “diffusion layer thickness” must be introduced a t  one 
point or another, generally with the aim of simplifying the differential equation. 
There exists another approach to this problem, which might be called the 
“integral” method, as opposed to the “differential” methods which have been 
discussed, in XThich the diffusion layer thickness is introduced a t  the start and 
is central to the solution of the problem. This method appears to  be superior, 
in general, to the differential method, and, as utilized by Matsuda (25)  (cf. iiext 
section), the integral method provides the most nearly definitive solution to the 
Ilkovic problem which has yet been achieved. 

The integral method as used by von Stackelberg (30) will be described fxst 
He defines two different “diffusion layer thicknesses”, an “integral” thicknes., 
A,  and a “differential” thickness, 6,  as follows: 

The former quantity corresponds to the thickness of a hypothetical region of the 
solution immediately around the electrode, having a volume sufficient to con- 
tain the total number of molecules actually reduced up to that time at, a concen- 
tration equal to the bulk solution concentration of active molecules. The dif- 
ferential thickness represents the space coijrdinate of the intercept of a line 
tangent to the concentration gradient a t  the electrode surface ni th  the linc, 
(7 = Co. The designation “diffusion layer thickness” for these quantities is mi.- 
lending, for they are not to be understood as measuring the extent of the region 
in which the concentration is inhomogeneous. They are simply numbers which 
happen to have the dimensions of length. This is of no importance, however, i i  

the development to follovi. 
From the earlier discuqssions of the relation of current to flux, it is easily ,?eel; 

that 

Further, since the 
charge transferred, 

time integral of the current must, be the total ::mcuut oi 
an erjuivaleiit definition for A is 

A = jti dt (881 4nri . nPCo o 
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Combining thesc equations produces von Stackelberg’s integral equation : 

von StAckelberg’s integral equation cannot be solved without more informa- 
tion about the relationship between 6 and A. Such a relationship can be found, 
for example, by using the equivalent relationship between the corresponding 
functions for a plane electrode or a stationary spherical electrode, functions 
which can be calculated from solutions to  the problem of diffusion a t  such 
electrodes. 

The solutions for the diffusion problems a t  stationary electrodes are relatively 
simple, and the results for the boundary conditions necessary in the present case 
are well known (7). Therefore, the procedure involves the determination of 6 and 
A from the available solutions by the use of the defining equations (equations 
85 and 8G). Some relationship between 6 and A can thereby be established. Intro- 
duction of the relatiomhip into equation 89 produces an integral equation which 
can, in principle, be solved for 6. 6 being known, the current can be evaluatcd 
with the use of equation 87. 

Though straightforward in principle, this procedure involves certain d i e -  
culties. For one thing, there is no theoretical basis for the assumption that 6 and 
A will have the same relationship a t  a stationary electrode as they will a t  a 
moving one. Secondly, it turns out that the form of the relationship between 6 
and A usually renders the integral equation too difficult to  solve. Thercfore, re- 
course is usually made by those using the integral approach (13, 14, 15, 30, 32) 
to approximations, the deleterious effect of which it is difficult to evaluate. The 
most serious objection involves the use of an integration interval which extends 
to infinity, inasmuch as the greater part of this interval is generally excluded by 
the nature of the approximations made during the simplification. This is related 
to the difficulties of the differential approach. 

The actual procedures are straightforwardly presented in the literature (13, 
14, 15, 30, 32) and need not be discussed here. The nature of the solutions 
obtained is of interest. 

If the relationship between 6 and A is based on the solution for the stationary 
plane electrode, the Ilkovic equation (equation 1) results. If the relationship is 
based on the solution for the stationary spherical electrode, a form of equation 
76, derived originally by Strehlow and von Stackelberg (32), results. The only 
difference among the several versions of the formula for the current derived 
from the stationary spherical electrode solution appears in the value assigned 
to the numerical const:nit which occurs in the second tcrm of equation 76.  The 
values assigned range from 17 to 39. This second term amounts in general t o  
a few per cent of the magnitude of the first term, and so may be considered n 
second-order correction. 

G .  TIlE SOLUTION OF MATSUDA 

The work of Matsuda (25) represents a, nearly definitive solution to the prob- 
lem .whose solution was originally undertaken by Ilkovic. In  the opinion of the 
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present authors, Matsuda’s approach is the best-formulated attack on tlw 
problem yet made. 

Matsuda begins with the general equation for diffusion and convection, a b  

introduced earlier: 

with initial and boundary conditions 

c = co 
c = o  
c = co 

2 ac r - = O  
dr 

“clearly given” by 

( t  = 0, r > ro) 

( t  > 0, r = ro) 

( t  > 0,r-P m) 

( t  > o , r - +  m) 

Matsuda multiplies both sides of cquation 40 by r2 and integrates both sides 
with respect to r from T O ,  the drop radius, to  infinity. He writes as  his result: 

This is not immediately obvious and Matsuda does not elaborate. The intei- 
vening steps appear to  be somcwhat as follows: 

When equation 40 is integrated, i t  becomes 

which, upon application of the appropriate boundary conditions, becomes r;) r2 dr = -Dri g),o - ;co 

The function on the left may be expanded according t o  the rules for differenti- 
ating under the integral sign, giving 

a r2C dr + (r’C),, 5 at I, at (97) 

Since C(ro, t )  = 0, the seconcl term is zero. Now if the fiinct,ioii 

is introduced, Matsuda’s result, equation 94, follows a t  once. 
At this point Matsudn introduces a new upper limit for the integral in eque- 

tion 94. €IC reasons that sinw the inhomogeneity of the concentration extends 
only a short may into the sclution, i t  may be considered to be confined within 
a radius ro + q t ) ,  where 8 is a function of time and he chooses ro + 8( t )  as his 
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new upper limit (the erroneous upper limit printed in the original paper is obvi- 
ously a typographical error). Now a change of variable is made, given by 

r = r o + x :  (99) 
stid in terms of the new variable, x, equation 94 becomes 

which ought to  be called Matsuda’s integro-differential equation. 
I n  considering this portion of Matsuda’s work i t  appears, first of all, that  

Matsuda’s final boundary condition, equation 93, is in error. It will be recalled 
that, while in most cases of diffusion the flux is simply given by - DdC/ar, in 
the present problem of interacting diffusion and convection, the flux is given by 

ac Y - D - + - t 2  
dr 3r2 

Thus a t  infinity aC/ar is undoubtedly zero; it is also necessary that the flux be 

zero. Therefore, the product r2- cannot be zero, but must be equal to yC/3D. 

Upon carrying the analysis through using this condition, it turns out that  the 
cluantity yCo/3 must be subtracted from the right side of equation 94. 

Sctually, this matter can be adjusted, since, if one derives equation 94 by 
integrating equation 40 immediately from to ro + 8 rather than from ro to = , 
one finds directly 

( 

provided that the following boundary conditions are substituted for those given 
by Matsuda: 

C = ( Y o  r = e , t  > 0 (92b) 

2 dC r - = O  ar 
r = 0 , t  > 0 

This correction is important in revealing the true nature of the assumptions 
necessary to achieve Matsuda’s solution. Both conditions 92b and 93b are inno- 
vations in the theory, though it will be recalled that the present authors used a 
condition much like 92b in demonstrating the magnitude of the error involved 
in some of the treatments discussed earlier. It was pointed out in the discussion 
of the “integral” methods that the diffusion layer “thicknesses” defined there 
were only nominal, having only the dimensions, not the quality, of length. 
Matsuda, however, intends that there be assumed a real, numerically definite 
length, which separates the solution into two regions, one in which the concen- 
tr‘ttion is homogeneous and one in which it is not. Condition 93b defines the 
continuity between the regions; it states that there is a flux, to be sure, but only 
convection is responsible for it. No flow of matter passes between the regions 
hy virtue of diffusion. 
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The only other feature of the derivation of equation 100 which is technically 
unsatisfactory involves Matsuda’s method for the transformation of coordinates 
from ( r ,  t )  to (2, t ) .  It can be shown, however, that  by making this transformn- 
tion in equation 40 and then integrating, the same result is achieved. 

The method of solution of equation 100 which is used by blatsuda is very 
ingenious. The unknown function Co - C is first expanded as a polynomial in 
x / e  : 

The v unknown coefficients are to  be determined by suitable boundary condi- 
tions. Note that equation 102 satisfies boundary condition 91 in its present form 
In his paper Matsuda carries out two calculations: in one he sets v equal to 6, 
and in the other, v equal to 10. The first calculation will be described. 

Ti1 order to find the values of the coefficients A, ,  Matsuda makes use of the 
following additional conditions : 

Of these, the first and second follow from conditions 92b and 93b. The last 
results from the introduction of the (5, 1 )  coordinates into equation 40, followed 
by setting rt: equal to zero. The remaining relationships are new. They are logical 
extensions of Matsuda’s assumption about the diffusion layer and constitute 
further continuity conditions a t  the interface between inhomogeneous and 
homogeneous regions of the solution. 

The calculation involved in finding the coefficients is essentially that of solving 
six simultaneous equations in six unknowns. The calculation is not difficult and 
the result is 

C n - C =  

Co- ro . [ 1 - 3 g) + 10 (i) - 15 (iy + 9 (i)5 - 2 (;)6] (104) 
To + z 

Inspection shows that all the boundary conditions (equation 103) are completely 
satisfied by equation 104; for instance, the sum of the coefficients is zero, so that 
Co - C is zero when x = 8. The others follow similarly. The only difficulty with 
equation 104 enters when yo, and therefore t ,  is allowed to approach zero. It turnq 
out that 8 is n series in ascending positive powers of t ;  consequently, the ratio. 
.c/o increase x-ithout bound as t becomes small. Thus Co - C is indeterminntr 
under these conditions. This ambiguity surrounding the requirements of eyux- 
tion 90 is the most serious mathematical defect in Natquda’s work. 

Matsuda now introduces equation 104 into equation 102 and carries out thc 
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integration. No difficulties arise, and after simplification, the result is a non- 
linear differential equation of first order: 

The solution of equation 105 is difficult. Matsuda writes 

intending, presumably, to determine the aj by direct substitution and subsequent 
equating of the coefficients of equal powers of t. He does not attempt to  justify 
his use of function 106 and discusses none of its mathematical properties such 
its convergence. Dimensional analysis of the physical situation reveals that  the 
form of the terms of equation 106 is only one among a number of reasonable 
possibilities. There seems to be no a priori reason for Matsuda's use of this 
particular functional form. 

Matsuda gives no exact procedure for the solution, but the present authors 
carried out the calculations in the following manner: TO = (yt) ' i3 was introduced 
in equation 105, and both sides were multiplied by 8. The first four terms of 0 
from equation 106 were substituted into equation 10.5. To evaluate 02, the Cauchy 
product 0 X 0 mas formed in the form of an array, retaining four terms. After 
simplification, the first derivative of the quantity in the parentheses of equation 
105 was found, and arranged in the order of ascending powers of t .  A new Cauchy 
product was now formed between this quantity and 0. Coefficients of like pov-ers 
of t (the powers are all fractional, of the form n/6, where n is an integer) were 
collected and set equal to zero. The set of equations so formed could be solved 
for the coefficients a,. Matsuda's result is 

4 = m[2.V"$ + $$(y-l/3n'/2t1/G) - l?,+5&(y--113D112f,116)? 

+ S9~'375(y-1/3Dl/~f,116)3 - . . . ]  (107) 

Since the current is givcn by the product of Faraday's constant, the electrode 
'Lrca, and the flux a t  the electrode surface, it  follon-s from crjuatlou 10% that:  

( 108) 

The quantity in parentheses can be evaluated by using equation 105. Matsuda's 
final result, after adjusting the dimensions to experimental quantities in the 
usual way, is 

7, = 709nCoD'/2~2/3t"G[1 + 35.5(D' / '~~- ' /~ t '"5)  + 266(D"2~-'/3t1'G)' - * . a ]  (109) 

A second calculation carried out by Matsuda for v of equation 102 equal to 
10 yields the same equation with respective constants in the series, 1, 36.3, and 
:kU. In  actual magnitudes the first three terms, using reasonable experimental 
values for D, m, etc., have the approximate ratio 100:3:0.3. 
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llatsuda executed the same calculation once again under somewhat different 
assumptions to determine the magnitude of the shielding effect of the capillaxy 
tube. The upper part of the depleted shell of solution surrounding the drop is 
cut by the plane tip of the capillary. Actually, therefore, the integration in equa- 
tion 100 should be carried out over an unsymmetrical spherical region, bounded 
partly by a plane. The result of this calculation is to shorn that the values of the 
reqpective constants in equation 109 should become 1, 23.9, and 62.9. 

The special virtues of Matsuda’s work are two: It is capable of indefinite ex- 
tension to  greater and greater precision simply by increasing the value of v in 
equation 102. Of course the labor of the calculation is increased thereby. Sec- 
ondly, there is no question about any approximation of the extent of the diffusion 
layer thickness. 0 is developed, by this method, in such a way as to make a solu- 
tion. previously chosen only to  sati3fy the boundary conditions, satisfy the 
diflerential equation :IS v-ell. This is iii complete contrast to the usual mcth3d, 
n-hich is to  find a solution for the differential equation, and then to modify this 
*elution to suit the boundary conditions. X o  doubt the concentration function 
derived by Matsuda’s procedure is an approsiniation; nevertheless, the expres- 
‘ion for the flus, which depends only on the thickness of the diffusion la;\w, 
ought to be reliable. 

1%. THE S O L r T I O S  O F  L I X G l S C  .iXD LOVERIDGE 

The contribution of Lingnne and Loveridge (19), which appeared simulta- 
IlC.0USly with that of Strehlon- and yo11 Stackelberg 132), is actually not so much 
:I formal solution as an ingenious aiid Liniple pragm‘itic correction to the Ilkcwic 
equation (1) which brings it into the form of equation T G ,  the two-term equation 
of Strehlow and von Stackelberg, while at the same time going far toward 
niaking the differences betn-een equation 1 aiid equation 76 more explicable 
physically. Lingane aiid Loveridge noticed that the constaut (?$)l’l, which ap- 
pears in the expression for the surface concentrntion gradient derived by Ilkovic 
(equation 35), is the only factor which distinguishes equation 35 from the corre- 
-ponding esprecsioii for diffusion a t  a statioiiary plane elec trodc : 

‘I‘hyv hypothesized that the factor (;$)I1* takes account of the effect of the con- 
vection due to drop growth on the magnitude of the flux; they considered, there- 
fore. that  the Ilkovic approach correctly account3 for the gron-th factor but not 
for the drop curvature. To overcome the latter defect, Lingane and Loveridge 
introduced the factor (301’? into the expression for the surface concentration 
gr‘ldient a t  a stationary spherical electrode, as a multiplier of the factor (Dt)112, 
wherever the latter occurs. They derived the equation for the current from this 
modified flux rxpres5ion; their result, after simplification, is identical with ecpu- 
tioii 76 except for the numeric21 value of the coilstant -4, for which they fiiid 30. 
i t  will be recalled that the solution of Strehlow and von Stnckelberg takes ac- 
rount of both drop curvature and drop growth; thus the remarkable result of 



Lingane and Loveridge appen-  to confirm their supposition that the drop- 
growth convectioii efl’ect is reflected by the coiistniit 

The theory of the curreiit :it ig mercury electrode has pLib5cd 
through a series of developnient>., oncli inore sopliisticated than the last, culmi- 
nating in the nork of 1Iatsuda ( 2 5 ) ,  uho has rnrricd the mathematical part of 
the theory t o  n poiiit of great rigor and u h o w  method is capablc of exteiisioii 
(at the cost of computational lahor) to  any degree of accuracy. It now remain- 
to  be seen to  &at extent the result3 of the theory fit thc esperimental descrip- 
tion of the curreiit-time relation. 

A striking feature of the theoretical J\ ork IT hich has been done on this prohleiii 
lies in the ($lose similarity of the equations for the current a s  derived by different 
authors by dir-erbe approaclieh, 50nie of them, as has been shov,n, seiioudy i i i  

error. At the saiiie time, the coiiceiitratioii function- derived by the v.iriou,i 
authors, from TI hich the surface flus niid curreiit are ctlculated, have dif:c.red 
greatly. For esample, ecluation 1 was derived by both Ilkovic (12) :ind 
AIacGillnvry and Rideal (21) by different methods; the corresponding concen- 
tration functions, given by erliintionh 34 niid 36, differ greatly. It appear5 that 
while the concentration functionq are quite seiiqitive to the mean3 of anulj 
their dopeh at  the electrodc surface tire not. 

111. ExPmmmxT.u, EVALU.~TIOU OF 1’ItorobE;i) THEORIES 
4. THE EXPERIME .\L CURILLZT-TIME VMtI l T I O S  

A thorough discussion of each of the factors which affect the diffusion curreiit 
will be found in Chapter IT’ of the well-known monograph by Kolthoff and 
Lirignrie (16). The prevailing evidence indicates that the Ilkovic equation and 
its modifications can account more or less satisfactorily, a t  the practical lel-el, 
for the influence of each of the many factors which affect the diffusion current 
In  detail, however, there :ire discrepancies betn eel: theory and experiment ; iii 
particular, the time dependence expressed by the Ilkovic equation is inadequate 
The time dependence is the concern of thiq study, nrid the following discii~sioii 
will relate only to this factor, whose primary importance to the physical theorv 
of polarography i5 self-evideiit ; if the curreiit-time relation predicted by theory 
is experimentally not realized, the theory itself becomes suspect. 

The earliest esperimental evaluation+ of the Ilkovic equation seemed to bear 
out the one-sixth power larv predicted (11). More recent n.ork (3, 13, 18, 20, 27, 
28, 29, 31, 33) ,  howe-\.er, using inore refined experimental methods, has tended 
to contradict the early results. The diirrcpaiicies nhich have come to light :irc~ 
of two sorts: first, it has been shonn in iiiaiiy c:i\es thnt the esperimental averitgc 
currents Lbre appreciably lon er thaii those predicted expeririieiitnlly ; secondly. 
careful studies of the curieiit :I> a function oi tirne have qhon ii thnt the one-sisth 
power time relation indicated by the Tlkoviv equation i> iiot obeyed a t  all during 
the first third of the drop life niid is obeyed only approxiinately during the fiiial 
two-thirds. Only slight irnprovenieiit i. re:dized by using the timr In7,- prdcGted 
by one of the modified formi 01 thc Ilkovic equirtion?. 
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Of the data which are amilable on the current-time relationship, those of 
Taylor, Smith, and Cooter (33) are the most detailed, particularly a t  small 
values of the time. They investigated this relationship for a rather restricted 
situation; they give detailed data for two drops, obtained under fairly typical 
and nearly identical experimental conditions. Their data include specification of 
neither the head of mercury used nor the physical dimensions of the capillary 
used; this is unfortunate hilice, as will be shown, it makes the calculation of initial 
and final m-values impossible. 

MacDonald and Wetniore (20) present data on the reduction of copper(I1) 
ion, for which they are able t o  evaluate the diffusion coefficient with much greater 
accuracy than is usually the case. Their data cover a range of concentrations and 
a range of drop times, in contrast to those of Taylor, Smith, and Cooter, but :ire 
less detailed a t  srnall values of the time. 

Lingane (18) presents a variety of curves for two different capillaries, at 
different values of the drop time. Unfortunately, 110 tabulation of the data is 
given, 

3 0 . 2  c.4 0.6 0.8 1.0 .-  I. 4 
5 

FIG. 1, The current-time dependence at thc dropping mercury electrode, theoretical 
and experimental. Curve 1, experimental data  of Tal-lor, Smith, and Cooter (33) .  Curve '2, 
theoretical curve based on simple Ilkovie equation 39. Curve 3, theoretical curve based on 
LIatsuda equation 109. Curve 4, theoretical curve based on llarkowitz-Elving equation 
115; plane approximation, parabolic initial gradient. Curve 5 ,  theoretical curve tmsed on  
1I:irkowit Y-IClving equation; spherical approximatioil, par:il>olic initial gradient. 



The experimental procedures used in gathering the three sets of data just citcd 
all involved the use of electronic equipment for measuring the current. However, 
the method of recording the current used by Taylor, Smith, and Cooter involved 
the use of a rotating drum camera to record the deflection of the beam of a 
cathode ray oscillograph. The photographic record TWS analyzed with what 
appears to be great accur'icj- by nienns of a special comparator. This entire 
technique seems superior to those used by the other authors cited, who photo- 
graphed the trace on the face of a czthode lay oscilloscope; methods of analyzing 
such photographs TX ere nut 6e:ciibed. 

The actual behavior of the current with time is exhibited by curve 1 of figure 1, 
which represents the data of Taylor, Smith, and Cooter (Drop No. 1). This ib 
typical of the behavior encuuntered by all investigators. The datct are plotted 
as  i / t 1 ' 6  z's. ill6. The Ilkovir ecjuntioii, so plotted, appears as a straight line, 
parallel to the t1'6 asiG. The Matiuda version, equation 109, appears as shown by 
curve 3 of figure 1 (the curvatiire resulting from the third-order term is so 
slight ;LF t o  be indistinguich'ible). The data appenr as an S-shaped curve, which 
approaches neither equnlion cscept as a limit near the end of the drop life. I11 
considering buch curves, it is well to  remember that the diffusion coefficient is 
not known very accurately; thih means that the actual vertical position of the 
theoretical curves is ill .ionic doubt, though this inaccuracy does not affect their 
shapt.. 

R. HYPOTHESES O S  THE DISClXW LXCT BIX"I'VEE:S EXFERIMEST .ISD THEOIL1 

Two suggestions have been advanced to account for the wide discrepancy be- 
tween the experimental results and the theoretical prediction. Lingaiie (IS) 
relates the discrepancy to the variation in mercury flow rate during the drop life- 
time, while Markon-itz and Elviiig 123, 24), follon-ing a suggestion of Airey and 
Smales (3), have mathematically developed the idea that the freshly forming 
drop begins its life in a region partially depleted by the electrolysis at the pre- 
ceding drop. 

Lingaiie (18) suggests that the low value of the current early in thf drop life 
may be accounted for by the neglect in the theoretical analysis of the time 
dependence of m, the rate of flow of mercury. The current is directly proportioiinl 
to the drop area, which is t:iken to be directly proportional to  ~ T L ? ' ~ .  Thus, werc 
the initial value of m lower than the assumed average value, the drop ares, and 
consequently the current, n-ould be smaller than theory predicts a t  small values 
of t .  

iry to have Fome idea of the timo 
dependence of m .  A discussion of this is found in the monograph by Kolthoff u ~ t l  
Lingane (16) (where, incidentally, the authors state that the observed discrep- 
ancy betn een observed and theoretical current is too large to be nccounted for 
by the variability of nr). Khen the Poiseuille equation, nhich relates the volume 
of a liquid flowing through a capillary to the capillary dimenqions, the viscosity 
of the liquid, 7, the differential head, M', a n d  the time, is comhined nith the 
definition of 711, there results 

To evaluate this suggestion, it iq nec 
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(l11) 

where rc ,  L. and d are, respectively, the radius and length of the capillary and 
the density of mercury. This equation is strictly true only for liquids which viet 
glass, unlike mercury, for circumstances under rvhich the kinetic energy of the 
discharged liquid is negligible, and for +teady state conditions, i.e., consliant 
AP. The dropping electrode would secm to meet none of these requirements for 
small t. 

Kolthoff and Liiigane cite Kucera (17) to show that, for a pendant drop a t  
the tip of a small capillary, the back pressure, which diminishes the nominal 
hydrostatic head, can be expressed as 

(I! 12) 

where u is the interfacial tension a t  the drop surface in dynes per centimeter and 
rd is the radius of the drop. Combining equation 111 and equation 112: 

(I. 13) 

Since nz, according to equation 113, depends on the drop radius, while, from 
equation 16, the drop radius depends on m, it  is seen that m is given only im- 
plicitly by equation 113. Combining equations 16 and 113 leads to a complicated 
equation in fractional pon-ers of m, intractable to formal methods of solution. 
Trial calculation might be made for m for specific values of the time, but the 
results would not be general. Furthermore, the general validity of equation 113 
has not been established, either experimentally or theoretically, for the dynamic 
case under consideration. 

First of all, the citation of the paper by Kucera and the absence of any further 
references to substantiate equation 112 is rather strange, since this equation has 
such a central place in Lingane’s interpretation. Kucera’s paper deals mainly 
with the effect of polarization on the interfacial tension of water and mercury. 
In the few paragraphs devoted to a diwussion of the back pressure, equation 112 
is introduced, but no  justification is given. S o  melition of any treatment of the 
rate of grolvth of mercury drops is to be found in several authoritative treatises 
and compendia dealing with capillarity and other surface effects (1, 5 ,  6). Bouasse 
(6) and Bikerman (5) both characterize the usual methods of the determinai ion 
of surface tension, to certain of which the dropping electrode has similarit ies, 
as static rather than dynamic methods. Bouasse indicates that mathematical 
difficulties would be anticipated in any treatment of drops which are falling 
(tombante) as opposed to those which are static (pendant). It appears that in 
any complete treatment, some account n-ould have to be taken of the contact 
angle in the system mercury-water-glaw (4), a t  least for the very early stages 
of drop formation. The contact angle would vary from case to case, depending 
on the nature of the solution and the kind of glass of which the capillary tube is 
made. Other factors, such as the adsorption on the drop surface of surface-active 
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material from the solution, would generally operate to diminish u. Equation 112 
cannot be regarded as more than an approximation. Kevertheless, the proba- 
bility is good that m is time-dependent, and that its time dependence is super- 
ficially described in parametric form by equations 16 and 113. 

Lingane’s suggestion that this time dependence is responsible for the current- 
time behavior of his data cannot, however, be accepted as the complete explana- 
tion. For one thing, such a suggestion ia inadequate to explain Lingane’s onm 
data. In  one case, under conditions almost identical to those governing the data 
of figure 1, a calculation shows that the ratio of the m-value expected from equa- 
tion 112 a t  the beginning of drop formation to that a t  the end of the drop life is 
about 0.6. m occurs to the tn-o-thirds power in the Ilkovic equation; thus, were 
a time-dependent m introduced, the current-time curve for this equation, 
corresponding to curve 2 in figure 1, should start somewhat lower and end some- 
what higher than curve 2 ,  the ratio of initial to  filial current being O.6?I3 or 0.7. 
(It will be recalled that the time-average value of nz is ordinarily used in the 
Ilkovic equation.) The situation is similar for the modified version of the Ilkovic 
equation, where the slope, as \yell :is the ordinates, should be somewhat lower 
a t  small values of time than n t  large. I t  can he seen from figure 1 that such 
diff ereiices could not neirly account for the discrepancies betn eeii theory and 
experiment. 

It must be admitted, a5 Liiignrie points out, that were a tirne-dependent m 
introduced into the differential eqtmtioii a t  the out5et of the analy4s, the theo- 
retical outcome would be different a i d  the current derived might have an entirely 
different form. On the other h : d ,  it i. cert:,in that the initial value of the drop 
arez is finite, and for a h o r t  peyiod of time, as mercury begiilq to emerge from 
the capillary without much chniige in noiniual radius, the area ought to be rela- 
tively constant. The “rnathem:,tical” drop, hen-ever, as used in the derivations, 
starts from zero area. It follows that, fcr a short period of time, the physical 
drop is larger than the correqpoiiding niatheniatical drop, so that, initially, the 
true current should actually be greater than the mathematically derived current, 
rather than the reverse. I n  fact, if the time dependence of the m-value nere the 
only effect causing the discrepancy between theory and experiment, and the 
finite initial drop area were taken into conqideration, the initial current ought 
t o  be infinite, as shon-n, for instance, hy equatioii 108: 

i = ilnFDCo (k + :) 
Since 0 has t ’ I 2  as a factor, 3 1 8  increaqes without bound as t goes to zero. 

It appears from these conqiderations that the question of the exact influence 
of a time-dependent m on the theoretical situation must remain open for the 
present. However, i t  also seems unlikely that such a hypothesis can completely 
account for the disparity between theory and experiment, although the time de- 
pendence of m should certainly be taken into account in any complete theory. 
The neglect of this factor in the past is probably due to the matheniatical compli- 
cations which would be consequent to its inclusion. Since, as this revien- shows, 
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these difficulties are very severe even without a time-dependent m, neglect of 
the time dependence of m on these grounds is understandable. 

Airey and Smales (3) have suggested that the freshly forming drop begin:$ its 
growth in a region of solution where the concentration is less than that in the 
bulk solution as a result of depletion by electrolysis a t  the immediately pre- 
ceding drop. RIarkowitz and Elving (23, 24) incorporated this postulate into 
current-time theory by discarding the usual boundary condition of const ant 
initial concentration in favor of a new one: 

C(r ,  0) = CoF(r) (1 14) 
F(r) is an arbitrary initial distribution function having values between 0 and 1, 
chosen so as best to represent the assumed physical situation. To avoid mathe- 
matical difficulties, the model of Lingane and Loveridge (19), in which the factor 
4$ is used to account for the effect of drop growth, was adopted. Solutions were 
sought for the problems of diffusion to  stationary plane and spherical electrodes 
with inhomogeneous initial concentration distributions. By the use of the 
Laplace transform calculus, the electrode surface flux was determined in a form 
in which the trial functions, F ( r ) ,  occurred in integrals whose evaluation could 
be deferred to  the final stages of the calculation. 

To describe the initial concentration distribution the most useful form of F ( r )  
was found to be the quadrant of a parabola, with the value zero a t  the origin 
and w-ith no discontinuity a t  the depleted region boundary. The time-dependent 
coordinate of this boundary was determined by using the Ilkovic equation 1 as 
a first approximation in calculating the volume of solution necessary to contain 
all of the electroactive material consumed during the lifetime of a drop. The 
chosen F ( r )  was introduced into the equation for the flux, and the integrals were 
evaluated. Following the procedure of Lingane and Loveridge, the quantity 35 
was associated with the product Dt wherever the latter occurred, and the equiva- 
lent spherical area was introduced. For the plane electrode model, the final 
equation for the current is 

The Ilkovic constant, IC, represents the product, 709 nD1Wm2/3, and p is the 
coordinate of the depleted region boundary; the form of p is complex. It can be 
shown that the bracketed factor of equation 115 reduces to 1 when p approaches 
zero, corresponding to the classical derivations of the Ilkovic equation with 
constant initial concentration. Thus, in the limit of vanishing depleted region, 
equation 115 approaches the Ilkovic equation. 

The current-time behavior of equation 115 was compared with the experi- 
mental data of Taylor, Smith, and Cooter (33). The experimental constants of 
these investigators n-ere introduced and the current calculated as a function of 
time. The results, plotted in figure 1, shon. excellent agreement with the experi- 
mental curve. Even better agreement can be achieved by the uEe of the corre- 
sponding Rphrricnl electrode solution; the latter solution is analogous to those 
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of the classical derivations which result in a two-constant equation for the cur- 
rent, as, for example, the solution of Lingane and Loveridge. Introduction of an 
empirical constant by trial to account for the portion of depleted solution swept 
away by the fall of the preceding drop improves the agreement of experimental 
and theoretical results for values of the constant which reflect partial attrition 
of the depleted region from this cause. 

The good agreement of equation 115 and its spherical counterpart with the 
experimental results indicates that the introduction of the depleted-region con- 
cept is a very satisfactory way of bridging the disparity between theory and 
experiment. A thorough discussion of the various assumptions and approxima- 
tions made in the mathematical developnient has been given by Markowitz (23), 
who concluded that the validity of the result is not seriously affected by them. 

IF'. COSCLVSIOKS 
A detailed and critical study of the theoretical and mathematical contribu- 

tions of various authors to the theory of the growth of the current a t  the dropping 
mercury electrode has been carried out, and the results compared with the best 
experimental work available. It appears that none of the theoretical equations 
can predict the experimental current-time relationship accurately, especially 
during the early stages of drop gron-th. 

Two suggestions have been advanced to resolve the discrepancy between theory 
and experiment. One suggestion attributes the discrepancy to  the neglect in all 
of the theoretical analyses of the variation in the rate of flow of mercury during 
the drop lifetime. The other suggestion useb the hypothesis that  a drop begins 
its life in a region of solution partially depleted of electroactire material as a 
result of electrolysis a t  the preceding drop. Mathematical development of the 
latter idea results in a theoretical current-time relationship which is substan- 
tially in agreement with the experimental data. It appears that the combination 
of the two suggestions outlined would result in even better agreement. 

The authors would like to thank the U. S. Atomic Energy Commission, which 
helped to  support the present study, and Dr. Rue1 V. Churchill of tlhe Depart- 
ment of Mathematics, University of Llichigan, for his advice :ind review of the 
mat'erial. 
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